分析 (1)利用cos2θ+sin2θ=1即可化為普通方程.
(2)曲線C2的極坐標(biāo)方程是$θ=\frac{π}{6}$,可得直角坐標(biāo)方程:y=$xtan\frac{π}{6}$,與圓的方程聯(lián)立即可得出交點(diǎn)坐標(biāo),進(jìn)而化為極坐標(biāo).
解答 解:(1)由曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),可得(x-1)2+y2=1.
(2)曲線C2的極坐標(biāo)方程是$θ=\frac{π}{6}$,可得直角坐標(biāo)方程:y=$xtan\frac{π}{6}$,即y=$\frac{\sqrt{3}}{3}$x.
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{(x-1)^{2}+{y}^{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{\sqrt{3}}{2}}\end{array}\right.$.
分別化為極坐標(biāo)(0,0),$(\sqrt{3},\frac{π}{6})$.
∴曲線C1和C2的交點(diǎn)的極坐標(biāo)為(0,0),$(\sqrt{3},\frac{π}{6})$.
點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、曲線的交點(diǎn)坐標(biāo)、參數(shù)方程應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a(a+b)2<-b(a+b)2 | B. | a(a+b)2>-b(a+b)2 | C. | a(a+b)2≤-b(a+b)2 | D. | a(a+b)2≥-b(a+b)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | n | C. | 2n-1 | D. | 2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com