1.設(shè)a>-b,則下列不等式中,成立的是( 。
A.a(a+b)2<-b(a+b)2B.a(a+b)2>-b(a+b)2C.a(a+b)2≤-b(a+b)2D.a(a+b)2≥-b(a+b)2

分析 a>-b,可得a+b>0.作差即可判斷出大小關(guān)系.

解答 解:∵a>-b,
∴a+b>0.
∴a(a+b)2-[-b(a+b)2]
=(a+b)(a+b)2>0.
∴a(a+b)2>[-b(a+b)2],
故選:B.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、“作差法”,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.二次函數(shù)f(x)和g(x)圖象開(kāi)口大小相同,開(kāi)口方向相反,已知函數(shù)g(x)=2x2,f(x)圖象的頂點(diǎn)是(1,-7),求:
(1)f(x)的解析式;
(2)f(x)在[-2,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求$\frac{sin50°+cos40°(1+\sqrt{3}tan10°)}{co{s}^{2}20}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a1+2a2=a3+2a4-1,則a5+2a6的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式組$\left\{\begin{array}{l}{x+3(5-x)>2}\\{x-3>\frac{x}{2}-\frac{1}{4}}\end{array}\right.$的解集是{x|$\frac{11}{2}$<x<$\frac{13}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$\overrightarrow{a}$,$\overrightarrow$不共線,且$\overrightarrow{c}$=λ1$\overrightarrow{a}$+λ2$\overrightarrow$(λ1,λ2∈R),若$\overrightarrow{c}$∥$\overrightarrow$,則λ1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)).
(1)將C1的方程化為普通方程;
(2)以O(shè)為極點(diǎn),x軸的正半軸建立極坐標(biāo)系.設(shè)曲線C2的極坐標(biāo)方程是$θ=\frac{π}{6}$,求曲線C1和C2的交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧度為8尺,米堆的高為5尺,問(wèn)米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放斛的米約有(  )
A.14斛B.22斛C.36斛D.66斛

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.雙曲線4x2-y2=16的焦點(diǎn)坐標(biāo)是(±2$\sqrt{5}$,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案