7.求下列函數(shù)的定義域:
(1)y=log5(1-x);
(2)y=$\frac{1}{lo{g}_{2}x}$;
(3)y=log7$\frac{1}{1-2x}$;
(4)y=$\sqrt{lo{g}_{3}x}$.

分析 根據(jù)對(duì)數(shù)函數(shù)的定義與性質(zhì),結(jié)合對(duì)應(yīng)函數(shù)的解析式,求出使解析式有意義的自變量的取值范圍即可.

解答 解:(1)∵y=log5(1-x),∴1-x>0,解得x<1,
∴該函數(shù)的定義域是(-∞,1);
(2)∵y=$\frac{1}{lo{g}_{2}x}$,∴x>0且x≠1,
∴該函數(shù)的定義域?yàn)椋?,1)∪(1,+∞);
(3)∵y=log7$\frac{1}{1-2x}$,∴$\left\{\begin{array}{l}{1-2x≠0}\\{\frac{1}{1-2x}>0}\end{array}\right.$,解得x<$\frac{1}{2}$,
∴該函數(shù)的定義域?yàn)椋?∞,$\frac{1}{2}$);
(4)∵y=$\sqrt{lo{g}_{3}x}$,∴l(xiāng)og3x≥0,解得x≥1,
∴該函數(shù)的定義域?yàn)閇1,+∞).

點(diǎn)評(píng) 本題考查了求對(duì)數(shù)函數(shù)定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在某次測(cè)量中得到數(shù)據(jù)如下:82,83,84,86,88,88,88,88,則這組數(shù)據(jù)的中位數(shù)是87.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知函數(shù)f(x)=$\frac{2}{{2}^{x}+1}$+a是奇函數(shù).
(1)求a的值;
(2)解不等式:f(2x2-1)+f(x+1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知復(fù)數(shù)z1=$\frac{-3+9i}{1+2i}$的虛部大于復(fù)數(shù)z2=i(2-a2i)的實(shí)部.
(1)求實(shí)數(shù)a的取值范圍;
(2)求|z2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列各數(shù):$\frac{1}{\sqrt{2}-1}$,$\frac{1}{\sqrt{3}-\sqrt{2}}$,$\frac{2}{\sqrt{5}-\sqrt{3}}$,$\frac{1}{\sqrt{6}-\sqrt{5}}$中最大的數(shù)是$\frac{1}{\sqrt{6}-\sqrt{5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的不等式ax2-bx+c≥0的解集為{x|1≤x≤2},則cx2+bx+a≤0的解集為(-∞,-1]∪[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知BC是圓x2+y2=25的動(dòng)弦,且|BC|=6,則BC的中點(diǎn)的軌跡方程是( 。
A.x2+y2=1B.x2+y2=9C.x2+y2=16D.x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)拋物線C:y2=2px的焦點(diǎn)F是圓M:x2+y2-4x-21=0的圓心,則圓M截C的準(zhǔn)線所得弦長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.假設(shè)某地有男駕駛員300名,女駕駛員200名.為了研究駕駛員日平均開車速度是否與有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名駕駛員,先設(shè)計(jì)了他們某月的日平均開車速度,然后按“男駕駛員”和“女駕駛員”分為兩組,再將兩組駕駛員的日平均開車速度(千米/小時(shí))分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均開車速度不足60(千米/小時(shí))的駕駛員中隨機(jī)抽取2人,求至少抽到一名“女駕駛員”的概率;
(2)如果一般認(rèn)為日平均開車速度不少于80(千米/小時(shí))者為“危險(xiǎn)駕駛”.請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“危險(xiǎn)駕駛與駕駛員的性別有關(guān)”?
危險(xiǎn)駕駛非危險(xiǎn)駕駛合計(jì)
男駕駛員154560
女駕駛員152540
合計(jì)3070100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊(cè)答案