10.在等差數(shù)列{an}中,a1=-60,a17=-12,
(1)求通項(xiàng)an;          
(2)求此數(shù)列的前33項(xiàng)和S33

分析 (1)利用等差數(shù)列通項(xiàng)公式求出公差d=3,由此能求出通項(xiàng)an
(2)利用等差數(shù)列通項(xiàng)公式能求出此數(shù)列的前33項(xiàng)和.

解答 解:(1)∵等差數(shù)列{an}中,a1=-60,a17=-12,
∴a17=-60+16d=-12,
解得d=3,
∴an=-60+(n-1)×3=3n-63.
(2)∵等差數(shù)列{an}中,a1=-60,d=3,
∴此數(shù)列的前33項(xiàng)和:
S33=33×(-60)+$\frac{33×32}{2}×3$=-396.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式的求法,考查等差數(shù)列的前33項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=6,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=2.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|2$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.奇函數(shù)f(x)在區(qū)間[1,3]上是單調(diào)遞減函數(shù),則函數(shù)f(x)在區(qū)間[-3,-1]上是(  )
A.單調(diào)遞減函數(shù),且有最小值-f(1)B.單調(diào)遞減函數(shù),且有最大值-f(1)
C.單調(diào)遞增函數(shù),且有最小值f(1)D.單調(diào)遞增函數(shù),且有最大值f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),兩曲線相交于M,N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若P(-2,-4),線段MN的中點(diǎn)為Q,求P點(diǎn)到Q點(diǎn)距離|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD的底面ABCD為菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E為PA的中點(diǎn).
(1)求證:PC∥平面EBD;
(2)在側(cè)棱PC上是否存在一點(diǎn)M,滿足PC⊥平面MBD,若存在,求PM的長;若不存在,說明理由.
(3)求三棱錐C-PAD的體積VC-PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,角A,B,C所對的邊分別為a、b、c.若$sinB+cosB=\sqrt{2}$,a=$\sqrt{2}$,b=2,則角A的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.⊙c:x2+y2-2ax-2(2a-1)y+4(a-1)=0,其中a∈R,
(1)當(dāng)a變化時(shí),求圓心的軌跡方程,
(2)證明⊙c過定點(diǎn),
(3)求面積最小的⊙c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求函數(shù)y=-x(x-a)在x∈[-1,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案