已知函數(shù)f(x)=
(3a-2)x+6a-1,x<1
ax,x≥1
在(-∞,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是( 。
A、(0,1)
B、(0,
2
3
C、[
3
8
,
2
3
D、[
3
8
,1)
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)單調(diào)性的性質(zhì)和關(guān)系即可得到結(jié)論.
解答: 解:若函數(shù)f(x)在(-∞,+∞)上單調(diào)遞減,
3a-2<0
0<a<1
3a-2+6a-1≥a
,
a<
2
3
0<a<1
a≥
3
8
,解得
3
8
≤x<
2
3
,
故選:C
點評:本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)分段函數(shù)單調(diào)性的性質(zhì)建立條件關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第二象限角,sinα+cosα=
3
3
,則cos2α=( 。
A、
5
3
B、
5
9
C、-
5
3
D、-
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+1(a>0且a≠1)的圖象過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x3+x2
x
的零點是( 。
A、-1B、0C、1D、0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在x、y軸上的截距分別是-3、4的直線方程是( 。
A、
x
-3
+
y
4
=1
B、
x
3
+
y
-4
=1
C、
x
-3
-
y
4
=1
D、
x
4
+
y
-3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知7sinα-24cosα=25,則tanα=( 。
A、±
7
24
B、±
24
7
C、-
24
7
D、-
7
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x+a-1
x2+1
為奇函數(shù),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知全集U=R,集合M={x|
x+3
≤0},N={x|x2=x+12},求(∁UM)∩N;
(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁UB).

查看答案和解析>>

同步練習(xí)冊答案