8.在△ABC中,角A、B、C對邊分別為a、b、c,且2asinA=(2b+c)sinB+(2c+b)sinC.
(Ⅰ)求角A;
(Ⅱ)若a=2,求△ABC周長的取值范圍.

分析 (Ⅰ)由正弦定理得a2=b2+c2+bc,再由余弦定理得A=120°;
(Ⅱ)由余弦定理可得(b+c)2-bc=4,令b+c=t,bc=t2-4(t>2),用均值不等式可得t的范圍,進(jìn)而得到周長的范圍.

解答 解:(Ⅰ)由已知,根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c,
即a2=b2+c2+bc,
由余弦定理得a2=b2+c2-2bccosA
故cosA=-$\frac{1}{2}$,由0°<A<180°,可得A=120°;
(Ⅱ)由余弦定理可得a2=b2+c2-2bccosA=b2+c2+bc
=(b+c)2-bc=4,
令b+c=t,bc=t2-4(t>2),由基本不等式可得t2≥4(t2-4),
解得2<t≤$\frac{4\sqrt{3}}{3}$,
則△ABC周長的取值范圍為(4,2+$\frac{4\sqrt{3}}{3}$].

點評 本題主要考查了正弦定理和余弦定理的應(yīng)用.在解三角形問題中一般借助正弦定理和余弦定理邊化角,角化邊達(dá)到解題的目的,同時考查基本不等式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡:sin4θ+cos2θ+sin2θcos2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義域為(-∞,0)∪(0,+∞)的函數(shù)f(x)是偶函數(shù),且f(2)=0,又函數(shù)y=$\frac{f(x)}{x}$在(0,+∞)上是減函數(shù),則不等式f(x)>0的解集為(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A,B,C所對邊分別是a、b、c,且cosA=$\frac{1}{3}$.
(1)求sin2$\frac{B+C}{2}$+cos2A的值;
(2)若a=$\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,$A=\frac{π}{3}$,$BC=\sqrt{3}$,AC=1,那么AB等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)若不等式|2x-1|+|x+2|≥m2+$\frac{1}{2}$m+2對任意實數(shù)x恒成立,求實數(shù)m的取值范圍;
(2)設(shè)a,b,c大于0,且1≤$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$≤$\frac{2}{5}$(|2x-1|+|x+2|)對任意實數(shù)x恒成立,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下面給出的四個命題中:
①以拋物線y2=4x的焦點為圓心,且過坐標(biāo)原點的圓的方程為(x-1)2+y2=1;
②點(1,2)關(guān)于直線L:X-Y+2=0對稱的點的坐標(biāo)為(0,3).
③命題“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④命題:過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有2條.
其中是真命題的有①②③(將你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=$\sqrt{1+x}+lgx$的定義域為(0,+∞).(結(jié)果用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算下列式子的值:
(1)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;   
(2)lg$\frac{3}{7}$+lg70-lg3-$\sqrt{l{g}^{2}3-lg9+1}$.

查看答案和解析>>

同步練習(xí)冊答案