9.已知雙曲線的方程為$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{2m}$=1,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$或$\sqrt{5}$

分析 利用雙曲線方程判斷焦點坐標(biāo)所在軸,然后求解離心率即可.

解答 解:雙曲線的方程為$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{2m}$=1,
焦點坐標(biāo)在x軸時,a2=m,b2=2m,c2=3m,
離心率e=$\sqrt{3}$.
焦點坐標(biāo)在y軸時,a2=-2m,b2=-m,c2=-3m,
離心率e=$\frac{\sqrt{-3m}}{\sqrt{-2m}}$=$\frac{\sqrt{6}}{2}$.
故選:C.

點評 本題考查雙曲線的離心率的求法,注意實軸所在軸的易錯點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i為虛數(shù)單位,zi=2i-z,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若關(guān)于x的不等式x2+ax-c<0的解集為{x|-2<x<1},對任意的t∈[1,2],函數(shù)f(x)=ax3+(m+$\frac{1}{2}$)x2-cx在區(qū)間(t,3)上總不是單調(diào)函數(shù),則m的取值范圍是( 。
A.-$\frac{14}{3}$<m<-3B.-3<m<-1C.-$\frac{14}{3}$<m<-1D.-3<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)f(x)=x2+2a|x-2|,數(shù)列{an}的前n項和為Sn,滿足Sn=f(n).
(1)若數(shù)列{an}為遞增數(shù)列,求實數(shù)a的取值范圍;
(2)當(dāng)a=$\frac{1}{2}$時,設(shè)數(shù)列{bn}滿足:bn=2${\;}^{{a}_{n}}$,記{bn}的前n項和Tn,求滿足不等式Tn>2015的最小整數(shù)n;
(3)當(dāng)函數(shù)f(x)為偶函數(shù)時,對任意給定的k(k∈N*),是否存在自然數(shù)p,r(k<p<r)使$\frac{1}{{a}_{k}}$,$\frac{1}{{a}_{p}}$,$\frac{1}{{a}_{r}}$成等差數(shù)列?若不存在,說明理由;若存在,請找出p,r與k的一組關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.極坐標(biāo)系中,點P,Q分別是曲線C1:ρ=1與曲線C2:ρ=2上任意兩點,則|PQ|的最小值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的各項均為正數(shù),a1=1,且a3,a4+$\frac{5}{2}$,a11成等比數(shù)列.
(Ⅰ)求an的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別是F1、F2,過F1作傾斜角為30°的直線交雙曲線右支于M點,若MF2垂直于x軸,則雙曲線的離心率為( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{\frac{1}{e}(x+2)(x-a),x<1}\end{array}\right.$(a為常數(shù),e為自然對數(shù)的底數(shù))的圖象在點A(e,1)處的切線與該函數(shù)的圖象恰好有二個公共點,則實數(shù)a的取值范圍是$a=-3±2\sqrt{2}$或a≥$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面直角坐標(biāo)系xOy中,設(shè)a1=2,有一組圓心在x軸正半軸上的圓An(n=1,2,…)與x軸的交點分別為A0(1,0)和An+1(an+1,0),過圓心An作垂直于x軸的直線ln,在第一象限與圓An交于點Bn(an,bn
(Ⅰ)試求數(shù)列{an}的通項公式
(Ⅱ)設(shè)曲邊形An+1BnBn+1(陰影所示)的面積為Sn,若對任意n∈N*,$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≤m恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案