將函數(shù)f(x)=
3
sin2x+cos2x(x∈R)的圖象向左平移
π
6
個(gè)單位長(zhǎng)度后得到函數(shù)y=g(x),則函數(shù)y=g(x)( 。
A、是奇函數(shù)
B、是偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù),也不是偶函數(shù)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:化簡(jiǎn)函數(shù)的表達(dá)式,然后圖象向左平移 
π
6
個(gè)單位得到函數(shù)g(x)的表達(dá)式的圖象,即可得到函數(shù)的表達(dá)式,然后判定奇偶性.
解答: 解:函數(shù)f(x)=
3
sin2x+cos2x=2sin(2x+
π
6
),圖象向左平移
π
6
個(gè)單位得到函數(shù)y=g(x)的圖象,
所以函數(shù)g(x)=2sin(2x+
π
2
)=2cos2x,
∴函數(shù)y=g(x)是偶函數(shù).
故選:B.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn)求值,圖象的平移,函數(shù)奇偶性的判定,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈C,則關(guān)于x的一元二次方程x2-x+1=0的根為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與實(shí)軸的夾角為45°,則雙曲線的離心率為( 。
A、
2
B、
3
C、
6
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:a≥1;命題q:關(guān)于x的實(shí)系數(shù)方程x2-2
2
x+a=0有虛數(shù)解,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|x|在x=0處的導(dǎo)數(shù)是( 。
A、0B、不存在C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(
π
6
-2x)(其中0≤x≤π)為增函數(shù)的區(qū)間是(  )
A、(0,
π
3
B、(
π
12
,
12
C、(
π
3
,
6
D、(
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x>0,y>0,且2x+y=6,則9x+3y有( 。
A、最大值27
B、最小值27
C、最大值54
D、最小值54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,矩形ABCD所在平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)點(diǎn)G在線段CE上運(yùn)動(dòng),當(dāng)二面角O-AF-G的平面角的正弦值為
2
3
61
時(shí),
①問(wèn)點(diǎn)G的位置;
②求直線AG與平面CBE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨x2-(m+1)x+m=0}.
(1)若B?A,求m所有可取值組成的集合;
(2)若B⊆A,求m所有可取值組成的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案