17.若復(fù)數(shù)(1+ai)2(i為虛數(shù)單位)是純虛數(shù),則正實(shí)數(shù)a=1.

分析 根據(jù)復(fù)數(shù)的概念進(jìn)行求解即可.

解答 解:(1+ai)2=1+2ai+ai2=1-a+2ai,
∵是純虛數(shù),
∴$\left\{\begin{array}{l}{1-a=0}\\{2a≠0}\end{array}\right.$得a=1,
故答案為:1.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的有關(guān)概念,根據(jù)復(fù)數(shù)的運(yùn)算法則進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.雙曲線${x^2}-\frac{y^2}{3}=1$的實(shí)軸長(zhǎng)是2,漸近線方程是y=$±\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=xex-alnx,曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:b≤e時(shí),f(x)≥b(x2-2x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=BC=2,AC⊥BC,點(diǎn)S是側(cè)棱AA1延長(zhǎng)線上一點(diǎn),EF是平面SBC與平面A1B1C1的交線.
(1)求證:EF⊥AC1;
(2)求四棱錐A1-BCC1B1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若$x∈[\frac{π}{3},\frac{4π}{3}]$,求f(x)的最大值和最小值,并指出f(x)取得最值時(shí)相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)用數(shù)學(xué)歸納法證明:12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$,n是正整數(shù);
(2)用數(shù)學(xué)歸納法證明不等式:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面是矩形,△PAD為等邊三角形,且平面PAD⊥平面ABCD,E,F(xiàn)分別為PC和BD的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)證明:平面PDC⊥平面PAD;
(Ⅲ)若矩形ABCD的周長(zhǎng)為6,設(shè)AD=x,當(dāng)x為何值時(shí),四棱錐P-A BCD的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),x∈R的最大值是2,最小正周期為$\frac{π}{2}$,其圖象經(jīng)過(guò)點(diǎn)M($\frac{π}{8}$,-1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,再將所得圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,得到函數(shù)g(x)的圖象,試用“五點(diǎn)法”畫出函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{6}$]上的簡(jiǎn)圖;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d,已知S2,S3+1,S4成等差數(shù)列.
(1)求d的值;
(2)令bn=$\frac{{S}_{n}}{n}$,記{bn}的前n項(xiàng)和為Tn,若$\frac{{S}_{n}}{{T}_{n}}$=2,求a1

查看答案和解析>>

同步練習(xí)冊(cè)答案