分析 (I)連接AC,根據(jù)中位線(xiàn)定理可得EF∥PA,故而EF∥平面PAD;
(II)由CD⊥AD及平面PAD⊥平面ABCD可得CD⊥平面PAD,故而平面PDC⊥平面PAD;
(III)取AD的中點(diǎn)M,連接PM,則PM⊥平面ABCD,用x表示出PM,AB,得出體積V關(guān)于x的函數(shù),利用函數(shù)的單調(diào)性得出體積V的最大值.
解答 (I)證明:連接AC,
∵四邊形ABCD是矩形,F(xiàn)是BD的中點(diǎn),∴F是AC的中點(diǎn)
∴EF∥PA,又EF?平面PAD,PA?平面PAD,
∴EF∥平面PAD.
(II)證明:∵平面PAD⊥平面 A BCD,且平面PAD∩平面ABCD=AD,
CD⊥AD,
∴CD⊥平面 P AD,又CD?平面 PDC,
∴平面PCD⊥平面 P AD.
(III)解:取AD的中點(diǎn)M,連接PM,
∵PA=PD,∴PM⊥AD,
又平面PAD⊥平面 A BCD,且平面PAD∩平面ABCD=AD,
∴PM⊥平面ABCD.
∵AD=x,∴AB=3-x (0<x<3 ),PM=$\frac{\sqrt{3}}{2}$x.
∴四棱錐 P-A BCD 的體積為$V=\frac{1}{3}x({3-x})•\frac{{\sqrt{3}}}{2}x=\frac{{\sqrt{3}}}{6}({3{x^2}-{x^3}})$ (0<x<3 ),
∴$V'=\frac{{\sqrt{3}}}{6}({6x-3{x^2}})$,
令V'=0,得x=2 或x=0 (舍),
當(dāng)x∈(0,2)時(shí)V′>0,當(dāng)x∈(2,3)時(shí)V′<0,
∴當(dāng)x=2 時(shí)V 取得最大值$\frac{{2\sqrt{3}}}{3}$.
點(diǎn)評(píng) 本題考查了線(xiàn)面平行,面面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 111111(2) | B. | 150(6) | C. | 1000(4) | D. | 101(8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\overrightarrow{AD}$ | B. | 2$\overrightarrow{DA}$ | C. | $\overrightarrow{0}$ | D. | $\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2本 | B. | 3本 | C. | 4本 | D. | 5本 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com