14.已知扇形的圓心角60°,半徑為2,則扇形的面積為$\frac{2π}{3}$.

分析 依題意,可求得故其弧長(zhǎng)l=θr=π,利用扇形的面積公式S=$\frac{1}{2}$lr即可求得答案.

解答 解:依題意知,扇形的圓心角為θ=$\frac{π}{3}$,又半徑為2,
故其弧長(zhǎng)l=θr=$\frac{2π}{3}$,
所以S=$\frac{1}{2}$lr=$\frac{1}{2}$×$\frac{2π}{3}$×2=$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查扇形的面積公式S=$\frac{1}{2}$lr的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)各項(xiàng)都是整數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1且S2、S4-4、S6成等比數(shù)列,則( 。
A.an=4n-3B.an=3n-2C.an=2n-1D.an=n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在平面直角坐標(biāo)系中,若不等式組$\left\{\begin{array}{l}x-y-1≥0\\ ax-y-1≤0\\ x-1≤0\end{array}\right.$(a為常數(shù))所表示的平面區(qū)域的面積等于3,則a的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,$∠A=\frac{π}{3}$,BC=3,點(diǎn)D在BC邊上.
(1)若AD為∠A的平分線,且BD=1,求△ABC的面積;
(2)若AD為△ABC的中線,且AD=$\frac{{3\sqrt{3}}}{2}$,求證:△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合$A=\{x|\frac{2}{x+1}≥1\}$,集合B={y|y=2x,x<0},則A∩B=( 。
A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$nan+an-c(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{{a_n}-2}}{{{2^{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若2Tn>m-2對(duì)n∈N*恒成立,求最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.[2,+∞)B.(2,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=2x3+1在[1,1+△x]上的平均變化率為( 。
A.3B.6C.3+3△x+(△x)2D.2[3+3△x+(△x)2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.函數(shù)y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式及最小正周期;
(2)求f(x)的最大值以及取得最大值時(shí)x的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案