函數(shù)y=f(x)在區(qū)間(-2,2)上的圖象是連續(xù)不斷的,且方程f(x)=0在(-2,2)上僅有一個實根x=0,則f(-1)f(1)的值( 。
A、大于0
B、小于0
C、等于0
D、與0的大小關系無法確定
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質及應用
分析:根據函數(shù)y=f(x)在區(qū)間(-2,2)上的圖象是連續(xù)不斷的,且方程f(x)=0在(-2,2)上僅有一個實根x=0,畫出圖象即可判斷出.
解答: 解:由于函數(shù)y=f(x)在區(qū)間(-2,2)上的圖象是連續(xù)不斷的,且方程f(x)=0在(-2,2)上僅有一個實根x=0,
可得圖象:
因此f(-1)f(1)的值與0的大小關系不正確.
故選:D.
點評:本題考查了函數(shù)零點存在判定定理,考查了數(shù)形結合的思想方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A={y|y=log2x,x<2},B={y|y=(
1
2
)x,x<1}
,則A∩B=( 。
A、(
1
2
,+∞)
B、(
1
2
,2
C、(0,
1
2
)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于方程|log2x|=lg(x+1)的兩個根x1,x2(x1<x2)以下說法正確的是( 。
A、x1+x2>2
B、x1x2>2
C、0<x1x2<1
D、1<x1+x2<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-3x+2在區(qū)間(1,2)內的函數(shù)值為(  )
A、大于等于0B、等于0
C、大于0D、小于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某設備的使用年限x與所支出的總費用y(萬元)統(tǒng)計數(shù)據如下表
使用年限x1234
總費用y1.5233.5
據上表可得回歸方程
y
=
b
x+
a
中的
b
=0.7,據此預測設備使用年限為6年時總費用為( 。
A、4.95萬元
B、5.2萬元
C、4.35萬元
D、4.9萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin(4x-
π
3
)
的圖象先向左平移
π
12
,然后將所得圖象上所有的點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),則所得到的圖象對應的函數(shù)解析式為( 。
A、y=-cosx
B、y=sin4x
C、y=sinx
D、y=sin(x-
π
12
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a7是a8,a9的等差中項,公比q滿足如下條件:△OAB(O為原點)中,
OA
=(1,1),
OB
=(2,q),∠A為銳角,則公比q等于(  )
A、1B、-1C、-2D、1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2,4},B={2,3,4},那么集合A∪B等于( 。
A、{1,2}
B、{2,4}
C、{1,2,3,4}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=1+log2x與g(x)=2-x+1在同一直角坐標系下的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習冊答案