分析 當(dāng)$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$時(shí),$\overrightarrow{p}$與$\overrightarrow{q}$共線,判斷充分性成立;
當(dāng)$\overrightarrow{p}$與$\overrightarrow{q}$共線時(shí),不一定滿足$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$,判斷必要性不成立.
解答 解:∵{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}構(gòu)成空間中的一個(gè)基底,當(dāng)$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$時(shí),
不妨設(shè)$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$=λ,則$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow$+z1$\overrightarrow{c}$,$\overrightarrow{q}$=x2$\overrightarrow{a}$+y2$\overrightarrow$+z2$\overrightarrow{c}$,
∴$\overrightarrow{p}$=λ$\overrightarrow{q}$,$\overrightarrow{p}$與$\overrightarrow{q}$共線,充分性成立;
當(dāng)$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow$+z1$\overrightarrow{c}$與$\overrightarrow{q}$=x2$\overrightarrow{a}$+y2$\overrightarrow$+z2$\overrightarrow{c}$共線時(shí),
不妨令x2=0,y2=y1,z2=z1,不滿足$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$,必要性不成立;
所以是充分不必要條件.
故答案為:充分不必要.
點(diǎn)評(píng) 本題考查了充分與必要條件的判斷問題,也考查了空間向量的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 42,12 | B. | 42,-$\frac{1}{4}$ | ||
C. | 12,-$\frac{1}{4}$ | D. | 無最大值,有最小值是-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com