16.已知60°角的終邊上有一點(diǎn)P(4,a),則a的值為(  )
A.$\frac{4\sqrt{3}}{3}$B.±$\frac{4\sqrt{3}}{3}$C.4$\sqrt{3}$D.±4$\sqrt{3}$

分析 直接由60°角的正切的定義列式求得a值.

解答 解:由題意可得,tan60°=$\frac{a}{4}$,
即$\frac{a}{4}=\sqrt{3}$,得a=4$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知定義在實(shí)數(shù)集上的奇函數(shù)f(x),當(dāng)x∈(0,1)時(shí),f(x)=$\frac{2^x}{{{4^x}+1}}$.
(1)求函數(shù)f(x)在(-1,1)上的解析式;
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性并加以證明;
(3)當(dāng)λ取何值時(shí),方程f(x)=λ在上(-1,1)有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=1+2$\sqrt{3}$sinxcosx-2sin2x,x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若把f(x)向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x),求g(x)在區(qū)間[-$\frac{π}{2}$,0]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow{a}$=(5,-2),$\overrightarrow$=(-4,3),$\overrightarrow{c}$=(x,y),若$\overrightarrow{a}$-2$\overrightarrow$+2$\overrightarrow{c}$=0,則$\overrightarrow{c}$等于( 。
A.(1,4)B.($\frac{13}{2}$,4)C.(-$\frac{13}{2}$,4)D.(-$\frac{13}{2}$,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=$\frac{lnx}{x}$,若a=f(3),b=f(4),c=f(5),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=2x•ln|x|的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知方程x2-tx+4=0(t>0)有實(shí)數(shù)根,求y=t2-4t+3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.化簡(jiǎn):$\overrightarrow{BC}$+$\overrightarrow{AB}$-$\overrightarrow{CD}$+$\overrightarrow{AD}$=2$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l1:ax+4y+1=0與直線l2:(4-a)x-y+a=0,若l1⊥l2,則實(shí)數(shù)a=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案