分析 (1)利用函數(shù)奇偶性的性質進行轉化求解即可.
(2)根據(jù)函數(shù)單調性的定義,利用定義法進行證明.
(3)根據(jù)函數(shù)奇偶性和單調性的關系求出函數(shù)在(-1,1)上的值域即可得到結論.
解答 解:(1)∵函數(shù)f(x)是奇函數(shù),∴f(0)=0,
當x∈(-1,0)時,-x∈(0,1),
則f(-x)=$\frac{{2}^{-x}}{{4}^{-x}+1}$=$\frac{2^x}{{{4^x}+1}}$=-f(x),
則f(x)=-$\frac{2^x}{{{4^x}+1}}$.x∈(-1,0),
故函數(shù)f(x)在(-1,1)上的解析式為f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}}{1+{4}^{x}},}&{x∈(0,1)}\\{0,}&{x=0}\\{-\frac{{2}^{x}}{1+{4}^{x}},}&{x∈(-1,0)}\end{array}\right.$;
(2)設0<x1<x2<1,
則f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}}{1+{4}^{{x}_{1}}}$-$\frac{{2}^{{x}_{2}}}{1+{4}^{{x}_{2}}}$=$\frac{{2}^{{x}_{1}+{x}_{2}}({2}^{{x}_{2}}-{2}^{{x}_{1}})}{(1+{4}^{{x}_{1}})(1+{4}^{{x}_{2}})}$,
∵0<x1<x2<1,
∴${2}^{{x}_{2}}$>2${\;}^{{x}_{1}}$,${2}^{{x}_{2}}$-2${\;}^{{x}_{1}}$>0,
則f(x1)-f(x2)>0,即f(x1)>f(x2),
即函數(shù)f(x)在(0,1)上的單調遞減;
(3)∵f(x)在(0,1)上的單調遞減,
∴當0<x<1時,f(1)<f(x)<f(0),
即$\frac{2}{5}$<f(x)<$\frac{1}{2}$,
∵f(x)是奇函數(shù),
∴當-1<x<0時,-$\frac{1}{2}$<f(x)<-$\frac{2}{5}$,
∵f(0)=0,
∴在(-1,1)上函數(shù)f(x)的取值范圍是($\frac{2}{5}$,$\frac{1}{2}$)∪(-$\frac{1}{2}$,-$\frac{2}{5}$)∪{0},
則若方程f(x)=λ在上(-1,1)有實數(shù)解,
則λ∈($\frac{2}{5}$,$\frac{1}{2}$)∪(-$\frac{1}{2}$,-$\frac{2}{5}$)∪{0}.
點評 本題主要考查函數(shù)奇偶性的應用以及函數(shù)單調性和值域的判斷和應用,利用定義法以及函數(shù)單調性和值域之間的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{3!}{5!}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4\sqrt{3}}{3}$ | B. | ±$\frac{4\sqrt{3}}{3}$ | C. | 4$\sqrt{3}$ | D. | ±4$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com