A. | f(x)在(0,$\frac{π}{2}$)上單調(diào)遞增 | B. | f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調(diào)遞減 | ||
C. | f(x)在(0,$\frac{π}{2}$)上單調(diào)遞減 | D. | f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調(diào)遞增 |
分析 由輔助角公式將f(x)=2sin(ωx+φ+$\frac{π}{6}$),由最小正周期2π,ω=1,關(guān)于y為對稱軸,求得φ,利用余弦函數(shù)圖象即可求得答案.
解答 解:f(x)=$\sqrt{3}$sin(ωx+φ)+cos(ωx+φ)=2sin(ωx+φ+$\frac{π}{6}$),
最小正周期T=$\frac{2π}{ω}$=2π,
∴ω=1,
∵圖象關(guān)于y軸對稱,
∴φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2cosx,
由函數(shù)圖象可知:
∴故答案:C.
點(diǎn)評 本題考查三角恒等變換及函數(shù)圖象,根據(jù)函數(shù)圖象求函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(π)=f(-3.14)>f(-3) | B. | f(π)<f(-3.14)<f(-3) | C. | f(π)>f(-3.14)>f(-3) | D. | f(π)<f(-3)<f(-3.14) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com