17.已知f(x)=$\frac{x+m}{{x}^{2}+1}$是定義在R上的奇函數(shù),則f(1)+f(-1)+f(m)的值為0.

分析 利用奇函數(shù)的性質(zhì)推出m的值,代入計算即可.

解答 解:∵f(x)=$\frac{x+m}{{x}^{2}+1}$是定義在R上的奇函數(shù),
∴f(0)=0,即m=0,
f(1)+f(-1)=0,
∴f(m)=f(0)=0,
∴f(1)+f(-1)+f(m)=0,
故答案為0.

點評 本題考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(cos2x,$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}cosx$),$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx$),設(shè)函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)取得最大值時x取值的集合;
(Ⅱ)設(shè)A,B,C為銳角三角形ABC的三個內(nèi)角,若cosB=$\frac{3}{5}$,f(C)=-$\frac{1}{4}$,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知ln2=a,ln3=b,用a與b表示下列各式:
(1)ln12;(2)ln216;
(3)ln36;(4)ln(29×311

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x為△ABC中最小的角$\overrightarrow{a}$=(sin$\frac{3x}{2}$,1),$\overrightarrow$=(cos$\frac{3x}{2}$,-$\frac{1}{2}$).
(1)若$\overrightarrow{a}$$⊥\overrightarrow$,求|$\overrightarrow{a}$+$\overrightarrow$|.
(2)求函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校要組織一次田徑暨游藝運動會.為了測試該運動的受歡迎程度,全校從6000名學(xué)生(其中男生2800名)按性別進行了分層抽樣調(diào)查,抽查到的男生有140人.
(1)抽查到的女生有多少名;
(2)將抽查的情況進行統(tǒng)計得下表:
 喜愛不太喜愛總計
男生10040 
女生 100 
總計   
請將上表填寫完整.并由此說明是否有99.9%的把握認為“喜愛該活動”與性別有關(guān)?
附表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.010 0.001 
k2.7063.8415.0246.63510.828
(3)高一四個班組成四個隊,分別選擇“搭橋過河”,“推球”,“跳大繩”三個游藝項目,且每個隊的選擇相互獨立,設(shè)選“搭橋過河”的隊數(shù)為X,試求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,直線y=±$\frac{\sqrt{3}}{3}$x與橢圓有四個交點,且以這四個交點為頂點的四邊形的面積為16$\sqrt{3}$,則b=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式$\frac{5-x}{x-2}$<0的解集是{x|x>5或x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C所對的邊分別為a、b、c,AD為邊BC上的高,已知AD=$\frac{\sqrt{3}}{6}$a,b=1.
(Ⅰ)若A=$\frac{2}{3}$π,求c;
(Ⅱ)求c+$\frac{1}{c}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x}{x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)證明:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{3}^{n}}{2}$anan+1,Sn=b1+b2+…+bn,求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案