如圖各圖均為學(xué)生作業(yè)中畫出的函數(shù)y=logax,y=ax,y=x+a在同一坐標(biāo)系中的圖象,則其中可能正確的圖形的序號是
 
(把你認(rèn)為正確的圖形的序號都填上)
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)和對數(shù)的函數(shù)的單調(diào)性,和一次函數(shù)的縱截距所得的a的范圍是否一致.故可判斷.
解答: 解:當(dāng)0<a<1,y=logax,y=ax均為減函數(shù),且y=x+a與y軸的交點縱坐標(biāo)小于1,
當(dāng)a>1,y=logax,y=ax均為增函數(shù),且y=x+a與y軸的交點縱坐標(biāo)大于于1,
觀察圖象知,①②③均錯,只有④正確.
故答案為:④
點評:本小題主要考查,一次函數(shù),對數(shù)函數(shù)、指數(shù)函數(shù)的圖象等基礎(chǔ)知識,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個k進(jìn)制數(shù)132(k)與十進(jìn)制數(shù)30相等,則k等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={(x,y)|x+y=3},B={(x,y)|x-y=1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx+y+m-1=0與圓x2-2x+y2-4y+1=0相交于A、B兩點,求線段AB長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+
y2
16
3
=1,過橢圓焦點F1作直線l交橢圓于M、N兩點.設(shè)線段MN的中點為P,若S△PF1F2=
1
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=elnx,g(x)=
1
e
f(x)-(x+1)(e為自然對數(shù)).
(1)求函數(shù)g(x)的最大值;
(2)求證:e 1+
1
2
+
1
3
+…
1
n
>n+1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3-ax
在區(qū)間[0,1]上單調(diào)遞減,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1

(Ⅰ)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(Ⅱ)確定a的值,使f(x)為奇函數(shù),并說明理由;
(Ⅲ)當(dāng)f(x)為奇函數(shù)時,若
1
1
2
-f(x)
<4x+a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=8x2的焦點坐標(biāo)為( 。
A、(0,
1
32
B、(
1
32
,0)
C、(2,0)
D、(0,2)

查看答案和解析>>

同步練習(xí)冊答案