分析 運(yùn)用數(shù)學(xué)歸納法證明,注意解題步驟,特別是n=k+1時(shí),運(yùn)用假設(shè)n=k的結(jié)論,結(jié)合放縮法,即可得證.
解答 證明:當(dāng)n=1時(shí),1>$\frac{1}{2}$顯然成立,
假設(shè)n=k時(shí),1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$>$\frac{k}{2}$(k∈N+)
當(dāng)n=k+1時(shí),1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
>$\frac{k}{2}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$>$\frac{k}{2}$+$\frac{1}{{2}^{k+1}}$+…+$\frac{1}{{2}^{k+1}}$
=$\frac{k}{2}$+$\frac{1}{{2}^{k+1}}$•2k=$\frac{k+1}{2}$,
即有當(dāng)n=k+1時(shí),1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$>$\frac{k+1}{2}$成立,
綜上可得,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N+).
點(diǎn)評(píng) 本題考查不等式的證明,主要考查數(shù)學(xué)歸納法證明不等式的方法,考查推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com