分析 a>0,b>0,可得1<3a<3.由于a+b=1,可得3a+3b=3a+31-a=${3}^{a}+\frac{3}{{3}^{a}}$,令3a=t∈(1,3),
則f(t)=t+$\frac{3}{t}$,利用導數(shù)研究其單調性即可得出.
解答 證明:∵a>0,b>0,∴1<3a<3.
∵a+b=1,
∴3a+3b=3a+31-a=${3}^{a}+\frac{3}{{3}^{a}}$,
令3a=t∈(1,3),
則f(t)=t+$\frac{3}{t}$,f′(t)=1-$\frac{3}{{t}^{2}}$=$\frac{{t}^{2}-3}{{t}^{2}}$=$\frac{(t+\sqrt{3})(t-\sqrt{3})}{{t}^{2}}$,
當$1<t<\sqrt{3}$時,f′(t)<0,函數(shù)f(t)單調遞減;當$\sqrt{3}<t<3$時,f′(t)>0,函數(shù)f(t)單調遞增.
又f(1)=f(3)=4,
∴f(t)<4.
即3a+3b<4.
點評 本題考查了利用導數(shù)研究其單調性極值與最值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | (-∞,1) | C. | (0,1) | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{16}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com