16.若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=$\sqrt{3}$,向量$\overrightarrow{AB}$與$\overrightarrow{CA}$的夾角為$\frac{π}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.6D.-6

分析 根據(jù)題意,由向量夾角的定義分析可得向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角即角A的值,由數(shù)量積的計(jì)算公式計(jì)算即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow{AB}$與$\overrightarrow{CA}$的夾角為$\frac{π}{3}$,
則向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角即角A=π-$\frac{π}{3}$=$\frac{2π}{3}$,
則$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$||$\overrightarrow{AC}$|cosA=4×$\sqrt{3}$×cos$\frac{2π}{3}$=-2$\sqrt{3}$;
故選:B.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的計(jì)算,注意向量的夾角的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方形ABCD-A1B1C1D1中,直線A1D與BC1的夾角為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=2sin(4x-\frac{π}{6})+1$的最小正周期為(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.i是虛數(shù)單位,(i+1)(i+2)=( 。
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計(jì)算:${({{m^{\frac{1}{4}}}{n^{-\frac{3}{8}}}})^8}$.
(2)比較大。簂og0.51.8,log0.52.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 $A({cos^2}x,sinx),B(1,cosx),設(shè)f(x)=\overrightarrow{OA}•\overrightarrow{OB},O為坐標(biāo)原點(diǎn)$,
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)$x∈[{-\frac{π}{2},\frac{π}{2}}]$時(shí),求函數(shù)的單調(diào)增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={-2},B={x|ax+1=0},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以下結(jié)論正確的是( 。
A.若x0為函數(shù)y=f(x)的駐點(diǎn),則x0必為函數(shù)y=f(x)的極值點(diǎn)
B.函數(shù)y=f(x)導(dǎo)數(shù)不存在的點(diǎn),一定不是函數(shù)y=f(x)的極值點(diǎn)
C.若函數(shù)y=f(x)在x0處取得極值,且f′(x0)存在,則必有f′(x0)=0
D.若函數(shù)y=f(x)在x0處連續(xù),則f′(x0)一定存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知a、b、c分別表示∠A、∠B、∠C所對(duì)邊的長(zhǎng),若$(a+b+c)(c+b-a)=(2-\sqrt{3})bc$,則∠A=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案