19.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其中$\overrightarrow{a}$=(sinx+cosx,1),$\overrightarrow$=(cosx,2),求函數(shù)f(x)的最大值和最小正周期.

分析 由向量的數(shù)量積的坐標(biāo)表示和二倍角公式及兩角和的正弦公式,結(jié)合正弦函數(shù)的最值和周期,即可得到所求.

解答 解:由$\overrightarrow{a}$=(sinx+cosx,1),$\overrightarrow$=(cosx,2),
函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=cosx(sinx+cosx)+2
=sinxcosx+cos2x+2=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)+2
=$\frac{\sqrt{2}}{2}$($\frac{\sqrt{2}}{2}$sin2x+$\frac{\sqrt{2}}{2}$cos2x)+$\frac{5}{2}$
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{5}{2}$.
則當(dāng)2x+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈Z,即x=kπ+$\frac{π}{8}$,k∈Z時(shí),
f(x)取得最大值$\frac{5+\sqrt{2}}{2}$;
最小正周期為T=$\frac{2π}{2}$=π.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示,同時(shí)考查三角函數(shù)的化簡(jiǎn)和求最值,注意運(yùn)用二倍角公式和兩角和的正弦公式,運(yùn)用正弦函數(shù)的最值和周期公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是偶函數(shù),其圖象關(guān)于點(diǎn)M($\frac{3π}{4}$,0)對(duì)稱,且在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),求φ和ω的值,并求方程f(x)-lgx=0的實(shí)根個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{{P}_{1}{P}_{2}}$=-$\frac{4}{3}$$\overrightarrow{{P}_{1}P}$,若$\overrightarrow{{P}_{1}P}$=-λ$\overrightarrow{P{P}_{2}}$,則λ=( 。
A.-3B.3C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解方程:log2(x-1)=log4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)直線y=x-2與雙曲線$\frac{{x}^{2}}{2}$-y2=1交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的三邊a,b,c所對(duì)的角分別為A,B,C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.討論函數(shù)y=$\frac{{2}^{x}+1}{{2}^{x}-1}$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知8A${\;}_{x}^{5}$=3A${\;}_{x+1}^{5}$,則x=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知⊙O的直徑AB=3,點(diǎn)C為⊙O上異于A,B的一點(diǎn),VC⊥平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:BC⊥平面VAC;
(2)若直線AM與平面VAC所成角為$\frac{π}{4}$,求三棱錐B-ACM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案