精英家教網 > 高中數學 > 題目詳情
17.在直角坐標系xOy中,射線OM的參數方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數,t≥0),以O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2cosθ.
(Ⅰ)求射線OM的極坐標方程;
(Ⅱ)已知直線l的極坐標方程是2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$,射線OM與曲線C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

分析 (I)射線OM的參數方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數,t≥0),化為普通方程:y=$\sqrt{3}$x,可知:射線OM與x軸的正半軸成60°的角,即可得出射線OM的極坐標方程.
(II)設P(ρ1,θ1),聯立$\left\{\begin{array}{l}{{ρ}_{1}=2cos{θ}_{1}}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$,解得P的極坐標.同理可得Q的極坐標,即可得出.

解答 解:(I)射線OM的參數方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數,t≥0),化為普通方程:y=$\sqrt{3}$x,可知:射線OM與x軸的正半軸成60°的角,
可得:射線OM的極坐標方程為:$θ=\frac{π}{3}$.
(II)設P(ρ1,θ1),由$\left\{\begin{array}{l}{{ρ}_{1}=2cos{θ}_{1}}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{ρ}_{1}=1}\\{{θ}_{1}=\frac{π}{3}}\end{array}\right.$.
設Q(ρ2,θ2),由$\left\{\begin{array}{l}{{ρ}_{2}(si{n}_{{θ}_{2}}+\sqrt{3}cos{θ}_{2})=3\sqrt{3}}\\{{θ}_{2}=\frac{π}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{ρ}_{2}=3}\\{{θ}_{2}=\frac{π}{3}}\end{array}\right.$.
∴θ12,|PQ|=ρ21=2.

點評 本題考查了極坐標方程方程的應用、曲線的交點、參數方程化為普通房方程,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

7.已知過點(2,4)的直線l被圓C:x2+y2-2x-4y-5=0截得的弦長為6,則直線l的方程為x-2=0或3x-4y+10=0.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.對于三次函數f(x)=ax3+bx2+cx+d(a≠0),定義:設f″(x)是函數y=f(x)的導數f′(x)的導數,若方程f″(x)=0有實數解x0,則稱點(x0,f(x0))為函數y=f(x)的“拐點”.有同學發(fā)現“任何一個三次函數都有‘拐點’;任何一個三次函數都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現作為條件,求若函數g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{1}{x-\frac{1}{2}}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若實數x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-2y+5|}的最小值為2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.下列各式中最小值為2的是(  )
A.$\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$B.$\frac{a}$+$\frac{a}$C.2x+$\frac{1}{2^x}$D.cosx+$\frac{1}{cosx}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.“菱形的對角線互相垂直且平分,AC、BD是菱形ABCD的對角線,所以AC、BD互相垂直且平分.”以上推理的大前提是菱形對角線互相垂直且平分.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.下列函數中,在其定義域內既是奇函數又是增函數的是( 。
A.y=$\frac{1}{x}$B.y=x2C.y=x3D.y=sinx

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖,在三棱錐P-ABC中,PA=PC=5,PB=4,AB=BC=2$\sqrt{3}$,∠ACB=30°.
(1)求證:AC⊥PB;
(2)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.2014年12月初,南京查獲了一批問題牛肉,滁州市食藥監(jiān)局經民眾舉報獲知某地6個儲存牛肉的冷庫有1個冷庫牛肉被病毒感染,需要通過對庫存牛肉抽樣化驗病毒DNA來確定感染牛肉,以免民眾食用有損身體健康.下面是兩種化驗方案:
方案甲:逐個化驗樣品,直到能確定感染冷庫為止.
方案乙:將樣品分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒DNA,則表明感染牛肉在這三個樣品當中,然后逐個化驗,直到確定感染冷庫為止;若結果不含病毒DNA,則在另外一組樣品中逐個進行化驗.
(1)求依據方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要化驗費多少元?
(3)試比較兩種方案,估計哪種方案有利于盡快查找到感染冷庫.說明理由.

查看答案和解析>>

同步練習冊答案