分析 (1)求出函數(shù)的對數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間及其最值,從而求出m的范圍;
(2)先求出x1,x2的范圍,問題轉(zhuǎn)化為證明lnx1+lnx2<-2,令H(x)=lnx1+lnx2,通過判斷函數(shù)的單調(diào)性證出結(jié)論即可.
解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=lnx+1,
令f′(x)>0,解得:x>$\frac{1}{e}$,
令f′(x)<0,解得:x<$\frac{1}{e}$,
∴f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
∴f(x)min=f($\frac{1}{e}$)=-$\frac{1}{e}$,f(1)=0,
x∈(0,$\frac{1}{e}$)時,f(x)<0,
畫出函數(shù)圖象,如圖示:
∴-$\frac{1}{e}$<m<0;
(2)∵x1lnx1=x2lnx2,設(shè)x1<x2,
則0<x1<$\frac{1}{e}$,x2>$\frac{1}{e}$,
要證明x1x2<$\frac{1}{{e}^{2}}$,只需證明lnx1+lnx2<-2,
令H(x)=lnx1+lnx2=lnx1+$\frac{{x}_{1}}{{x}_{2}}$lnx1=(1+$\frac{{x}_{1}}{{x}_{2}}$)lnx1,
∵x2>$\frac{1}{e}$,∴$\frac{{x}_{1}}{{x}_{2}}$<ex1,
∴H(x)<(1+ex1)lnx1,
令g(x)=(1+ex)lnx,(0<x<$\frac{1}{e}$),
則g′(x)=elnx+e+$\frac{1}{x}$,g″(x)=$\frac{ex-1}{{x}^{2}}$,
∵x<$\frac{1}{e}$,∴ex-1<0,
∴g″(x)<0,g′(x)是減函數(shù),
又g′($\frac{1}{e}$)=e,∴g′(x)>g′($\frac{1}{e}$),g′(x)>0,
∴g(x)是增函數(shù),又g($\frac{1}{e}$)=-2,
∴g(x)<g($\frac{1}{e}$)=-2,
∴H(x)<-2,
∴0<x1x2<$\frac{1}{{e}^{2}}$.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,2} | C. | {1,3} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 2 | C. | $\frac{13}{6}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com