A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{7}$ | D. | $\frac{1}{9}$ |
分析 求出橢圓的焦點坐標,利用已知條件直接求解距離,然后得到比值.
解答 解:F1,F(xiàn)2為橢圓$\frac{x^2}{4}+{y^2}$=1的兩個焦點,可得F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3},0$).a(chǎn)=2,b=1.
點P在橢圓上,若線段PF1的中點在y軸上,PF1⊥F1F2,
|PF2|=$\frac{^{2}}{a}$=$\frac{1}{2}$,由勾股定理可得:|PF1|=$\sqrt{{\left|{PF}_{2}\right|}^{2}+|{F}_{1}{F}_{2}{|}^{2}}$=$\frac{7}{2}$.
$\frac{|P{F}_{2}|}{|P{F}_{1}|}$=$\frac{\frac{1}{2}}{\frac{7}{2}}$=$\frac{1}{7}$.
故選:C.
點評 本題考查橢圓的簡單性質(zhì)的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售額y | 27 | 31 | 35 | 41 | 49 | 56 | 62 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com