分析 (1)利用$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,及其b=$\sqrt{{a}^{2}-{c}^{2}}$,解出即可得出.
(2)證法一:設(shè)P點(diǎn)坐標(biāo)為(x1,y1),則Q點(diǎn)坐標(biāo)為(x1,-y1).可得kAP,直線AP的方程為y=$\frac{{y}_{1}-1}{{x}_{1}}$x+1.令y=0,解得m.同理可得n.再利用(x1,y1)在橢圓$\frac{x2}{2}$+y2=1上,即可得出mn.
解法二:設(shè)直線AP的斜率為k(k≠0),則AP的方程為y=kx+1,令y=0,得m.聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,解得P,則可得Q點(diǎn)的坐標(biāo).可得kAQ,可得直線AQ的方程,可得n,即可得出.
解答 解:(1)∵$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,
解得a=$\sqrt{2}$,c=1,
∴b=$\sqrt{{a}^{2}-{c}^{2}}$=1.
故橢圓的方程為 $\frac{x2}{2}$+y2=1.
(2)證法一:設(shè)P點(diǎn)坐標(biāo)為(x1,y1),則Q點(diǎn)坐標(biāo)為(x1,-y1).
∵kAP=$\frac{{y}_{1}-1}{{x}_{1}-0}$=$\frac{{y}_{1}-1}{{x}_{1}}$,
∴直線AP的方程為y=$\frac{{y}_{1}-1}{{x}_{1}}$x+1.
令y=0,解得m=-$\frac{{x}_{1}}{{y}_{1}-1}$.
∵kAQ=$\frac{-{y}_{1}-1}{{x}_{1}-0}$=-$\frac{{y}_{1}+1}{{x}_{1}}$,
∴直線AQ的方程為y=-$\frac{{y}_{1}+1}{{x}_{1}}$x+1.
令y=0,解得n=$\frac{{x}_{1}}{{y}_{1}+1}$.
∴mn=-$\frac{{x}_{1}}{{y}_{1}-1}$×$\frac{{x}_{1}}{{y}_{1}+1}$=$\frac{{x}_{1}^{2}}{1-{y}_{1}^{2}}$.
又∵(x1,y1)在橢圓$\frac{x2}{2}$+y2=1上,
∴$\frac{{x}_{1}^{2}}{2}+{y}_{1}^{2}$=1,即1-${y}_{1}^{2}$=$\frac{{x}_{1}^{2}}{2}$,
∴mn=2.
∴以mn為常數(shù),且常數(shù)為2.
解法二:設(shè)直線AP的斜率為k(k≠0),則AP的方程為y=kx+1,
令y=0,得m=-$\frac{1}{k}$.
聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$
消去y,得(1+2k2)x2+4kx=0,解得xA=0,xP=-$\frac{4k}{1+2{k}^{2}}$,
∴yP=k×xP+1=$\frac{1-2{k}^{2}}{1+2{k}^{2}}$,
則Q點(diǎn)的坐標(biāo)為(-$\frac{4k}{1+2{k}^{2}}$,-$\frac{1-2{k}^{2}}{1+2{k}^{2}}$).
∴kAQ=$\frac{-\frac{1-2{k}^{2}}{1+2{k}^{2}}-1}{-\frac{4k}{1+2{k}^{2}}}$=$\frac{1}{2k}$,
故直線AQ的方程為y=$\frac{1}{2k}$x+1.
令y=0,得n=-2k,
∴mn=(-$\frac{1}{k}$)×(-2k)=2.
∴mn為常數(shù),常數(shù)為2.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、直線的斜率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4∈P | B. | -2∈P | C. | 0∈P | D. | 4∈P |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1) | B. | (4,+∞) | C. | (-∞,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<2 | B. | -2<m<2 | C. | 0<m<2 | D. | -2<m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {2,3} | C. | {0,1,2} | D. | {0,2,3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com