Loading [MathJax]/jax/output/CommonHTML/jax.js
8.為了判斷高中學生的文理科選修是否與性別有關(guān),隨機調(diào)查了50名學生,得到如標2×2列聯(lián)表:
 理科文科總計
20 525
101525
總計302050
那么,認為“高中學生的文理科選修與性別有關(guān)系”犯錯誤的概率不超過0.005.

分析 利用公式求得K2,與臨界值比較,即可得到結(jié)論.

解答 解:K2=50×20×1510×5230×20×25×25≈8.333>7.879,
∴認為“高中學生的文理科選修與性別有關(guān)系”犯錯誤的概率不超過0.005.
故答案為:0.005.

點評 本題考查獨立性檢驗知識,考查學生的計算能力,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.sin(75°-α)=( �。�
A.sin(15°-α)B.sin(15°+α)C.cos(15°-α)D.cos(15°+α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知橢圓C:x2a2+y22=1(a>b>0)的離心率為22,左焦點為F(-1,0),過D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)在y軸上,是否存在定點E,AEBE恒為定值?若存在,求出E點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖所示,某居民小區(qū)內(nèi)建一塊直角三角形草坪ABC,直角邊AB=40米,AC=403米,扇形花壇ADE是草坪的一部分,其半徑為20米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)兩條小路OM和ON,考慮到小區(qū)整體規(guī)劃,要求M、N在斜邊BC上,O在弧^DE上,OM∥AB,ON∥AC,.
(1)設(shè)∠OAE=θ,記f(θ)=OM+ON,求f(θ)的表達式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,兩條路每米鋪設(shè)費用均為400元,如何設(shè)計θ的大小使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知π2<β<α<34π,cos(α+β)=-35,sin(α-β)=513,求cos2β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點P是雙曲線x2a2-y2b2=1(a>0,b>0)右支上一點,F(xiàn)1、F2分別為雙曲線的右、右焦點,若I為△PF1F2的內(nèi)心,則S△IPF1-S△IPF2=aa2+b2SIF1F2成立.請類比該結(jié)論得出有關(guān)橢圓的一個結(jié)論并進行證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某飲料店某5天的日銷售收入y(單位:百元)與當天平均氣溫x(單位:℃)之間的數(shù)據(jù)如表:
x-2-1012
y54221
甲、乙、丙、丁四位同學對上述數(shù)據(jù)進行了研究,分別得到了x與y之間的四個線性回歸方程:①ˆy=-x+3,②ˆy=-x+2.8,③ˆy=-x+2.6,④ˆy=-x+2.4,其中正確的方程是( �。�
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=(3sinx+cosx)(3cosx-sinx).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,所有棱長都相等,若該三棱柱的頂點都在球O的表面上,且三棱柱的體積為94,則球O的表面積為7π.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷