已知a>0,b>0,化簡:
(1)5a-1+5a+5a+1;
(2)(a 
1
2
-b 
1
2
)÷(a 
1
4
-b 
1
4
).
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算
專題:函數(shù)的性質(zhì)及應用
分析:利用分數(shù)指數(shù)冪的運算法則直接計算.
解答: 解:(1)∵a>0,b>0,
∴5a-1+5a+5a+1
=
1
5
•5a+5a+5•5a
=(
1
5
+1+5
)•5a
=
31
5
5a

=31•5a-1
(2)∵a>0,b>0,
∴(a 
1
2
-b 
1
2
)÷(a 
1
4
-b 
1
4

=(a
1
2
-b
1
2
)÷(a
1
2
-b
1
2
)(a
1
2
+b
1
2

=
1
a
+
b
點評:本題考查分數(shù)指數(shù)冪的運算法則的應用,是基礎題,解題時要認真解答,避免出現(xiàn)計算上的低級錯誤.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個袋中裝有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率為
2
5
;從袋中任意摸出2個球,至少得到1個白球的概率為
7
9

(Ⅰ)若袋中共有10個球;
(1)求白球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求ξ的數(shù)學期望E(ξ).
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于
7
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c為△ABC的三邊,化簡:
(a-b-c)2
+
(-a-b)2
+
(b-a-c)2 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx+c(ω>0,x∈R,c是實數(shù)常數(shù))的圖象上的一個最高點(
π
6
,1),與該最高點最近的一個最低點是(
3
,-3).
(1)求函數(shù)f(x)的解析式及其單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且
AB
BC
=-
1
2
ac,角A的取值范圍是區(qū)間M,當x∈M時,試求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;

(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行進行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={y|y=x2+4x-1},N={x|y2+2x=3},求M∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為零的等差數(shù)列{an},等比數(shù)列{bn},滿足b1=a1+1=2,b2=a2+1,b3=a4+1.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)若cn=an•bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓x2+2y2=a2(a>0)的一個頂點和兩個焦點構(gòu)成的三角形的面積為4.
(1)求橢圓C的方程;
(2)已知直線y=k(x-1)與橢圓C交于A、B兩點,試問,是否存在x軸上的點M(m,0),使得對任意的k∈R,
MA
MB
為定值,若存在,求出M點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
x+y
x
1
3
+y
1
3
-
x
4
3
-y
4
3
x
2
3
-y
2
3

查看答案和解析>>

同步練習冊答案