【題目】如圖已知,,分別為、的中點,將沿折起,得到四棱錐,的中點.

1)證明:平面

2)當正視圖方向與向量的方向相同時,的正視圖為直角三角形,求此時二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)由平面圖可知,,,得到平面,得,再由已知可得.由直線與平面垂直的判定可得平面;

2)由的正視圖三角形與全等,且為直角三角形,得,以為原點,分別以、、所在直線為、、軸建立空間直角坐標系,分別求出平面的一個法向量與平面的一個法向量,由兩法向量所成角的余弦值可得二面角的余弦值.

1)由平面圖可知,,,

平面,平面,,

的中點,.

,平面;

2四棱錐的正視圖三角形與全等,且均為直角三角形,,

為原點,分別以、、所在直線為、、軸建立空間直角坐標系.

、、、,

,.

設平面的一個法向量為

,取,得.

為平面的一個法向量,

設二面角,.

由圖形可知,二面角為鈍角,所以,二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCDHKLE中,底面ABCD是邊長為3的正方形,對角線ACBD相交于點O,點F在線段AH上且,BE與底面ABCD所成角為.

1)求證:ACBE;

2M為線段BD上一點,且,求異面直線AMBF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量(cosxsinx),(cosx,﹣sinx),函數(shù)

1)若x(0,),求tan(x)的值;

2)若,(,),(0),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,分別為的中點,的一個三等分點(靠近點).將沿折起,記折起后點,連接上的一點,且,連接

1)求證:平面

2)若,直線與平面所成的角為,當最大時,求,并計算

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)區(qū)間情況;

2)若函數(shù)有且只有兩個零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,,二面角、的大小均為,設三棱錐的外接球球心為,直線交平面于點,則三棱錐的內(nèi)切球半徑為_______________,__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,四邊形為平行四邊形,,,,,點在線段上,,點在線段,

(1)證明:平面;

(2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對于任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場推出消費抽現(xiàn)金活動,顧客消費滿1000元可以參與一次抽獎,該活動設置了一等獎、二等獎、三等獎以及參與獎,獎金分別為:一等獎200元、二等獎100元、三等獎50元、參與獎20元,具體獲獎人數(shù)比例分配如圖,則下列說法中錯誤的是(

A.獲得參與獎的人數(shù)最多

B.各個獎項中一等獎的總金額最高

C.二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍

D.獎金平均數(shù)為

查看答案和解析>>

同步練習冊答案