已知復數(shù)z的實部為-2,虛部為1,則
25i
z2
=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:由條件利用復數(shù)的基本概念求出z,再利用兩個復數(shù)代數(shù)形式的乘除法法則求出
25i
z2
的值.
解答: 解:由題意可得z=-2+i∴
25i
z2
=
25i
3-4i
=
25i(3+4i)
(3-4i)(3+4i)
=
25(-4+3i)
25
=-4+3i,
故答案為:-4+3i.
點評:本題主要考查復數(shù)的基本概念,兩個復數(shù)代數(shù)形式的乘除法法則的應用,虛數(shù)單位i的冪運算性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:α∈(0,
π
2
),sinα=
3
5
求值:
(Ⅰ)tanα;
(Ⅱ)cos2α+sin(α+
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+2=0},且A∪B=A,A∩B=C,求實數(shù)a,m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z∈C且滿足1<|z|<2,在復平面內(nèi),復數(shù)z對應的點Z的集合是
 
圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y∈R*,x+9y=3,則xy的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,下列三角表達式:①sin(A+B)+sinC,②cos(B+C)+cosA,③tan
A+B
2
tan
C
2
,④cos
A+B
2
cos
C
2
,其中恒為定值的有
 
(請將你認為正確的式子的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
25
+
y2
16
=1上的一點P到橢圓一個焦點的距離為4,則P到另一焦點距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建立極坐標系.已知圓C的極坐標方程為ρ2-8ρcosθ+12=0,直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)).
(Ⅰ)寫出圓C的直角坐標方程;
(Ⅱ)若點P為圓C上的動點,求點P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若A=
π
6
,且AB=2,BC=1,則△ABC的面積為
 

查看答案和解析>>

同步練習冊答案