【題目】在長方體中,分別是的中點,,過三點的的平面截去長方體的一個角后.得到如圖所示的幾何體,且這個幾何體的體積為.
(1)求證:平面;
(2)求的長;
(3)在線段上是否存在點,使直線與垂直,如果存在,求線段的長,如果不存在,請說明理由.
【答案】(1)證明見解析;(2);(3).
【解析】試題分析:(1)證得是平行四邊形,得出線線平行,利用線面平行的判定定理證明命題成立;(2)利用等體積轉(zhuǎn)化,求出;(3)在平面中作,過作,推出,證明,推出相似于,求得.
試題解析:解:(1)在長方體中,可知,由四邊形是平行四邊形,所以.因為分別是的中點,所以,則,
又面面,則平面............4分
(2)∵,
∴..................8分
(3)在平面中作交于,過作交于點,則.
因為平面平面,∴,而
,∴,
又∵,∴平面,
且平面,∴,
∵,∴,∴,又∵,∴.
∵四邊形為直角梯形,且高,∴.......... 12分
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,為橢圓上一點(在軸上方),連結(jié)并延長交橢圓于另一點,設(shè).
(1)若點的坐標為,且的周長為8,求橢圓的方程;
(2)若垂直于軸,且橢圓的離心率,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為, , , 的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓,直線,過右焦點的直線與橢圓交于兩點,線段的垂直平分線分別交直線和于點.
(1)求弦長的最小值;
(2)在直線上任取一點,當的斜率時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項和,向量=(1,bn), =(an-1,Sn), //.
(1)若bn=2,求數(shù)列{an}通項公式;
(2)若, =0.
①證明:數(shù)列{an}為等差數(shù)列;
②設(shè)數(shù)列{cn}滿足,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中.
(1)若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;
(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com