18.已知△ABC的頂點的坐標(biāo)分別為A(3,8),B(3,-2),C(-3,0)
求:(1)AB邊上中線的長;
    (2)AB邊上中線所在的直線方程.

分析 (1)由點A、B的坐標(biāo)求得線段AB的中點坐標(biāo),然后結(jié)合兩點間的距離公式來求AB邊上中線的長度;
(2)利用兩點式來求直線方程.

解答 解:(1)∵A(3,8),B(3,-2),
∴線段AB的中點坐標(biāo)是(3,3),
又∵C(-3,0),
∴AB邊上中線的長為:$\sqrt{(-3-3)^{2}+(0-3)^{2}}$=3$\sqrt{5}$;

(2)結(jié)合(3,3),(-3,0)易得AB邊上中線所在的直線方程為:$\frac{y-3}{0-3}$=$\frac{x-3}{-3-3}$,
整理,得:
x-2y+3=0.

點評 本題考查了直線方程的求解,根據(jù)已知條件正確選取直線方程的形式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}的各項為正數(shù),且a1,22,a2,24,…,an,22n,…成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記Sn為等比數(shù)列{an}的前n項和,若Sk≥30(2k+1),求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在直角梯形ABCD中,DA=AB=1,BC=2,點P在陰影區(qū)域(含邊界)中運動,則有$\overrightarrow{AP}•\overrightarrow{BD}$的取值范圍是( 。
A.[-1,1]B.$[{-1,\frac{1}{2}}]$C.$[{-\frac{1}{2},1}]$D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(m,1),如果向量$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則$\overrightarrow{a}$•$\overrightarrow$等于( 。
A.-$\frac{5}{2}$B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知2sinx=sin($\frac{π}{2}$-x),求$\frac{cos2x}{1+sin2x}$的值;
(2)求函數(shù)f(x)=ln(sinx-$\frac{1}{2}$)+$\sqrt{1-tanx}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\frac{k-x}{x}$在(-∞,0)上是減函數(shù),則實數(shù)k的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解方程:log3(x+14)+log3(x+2)=log38(x+6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列S1,S2,S4,…的公比q;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,且S2=4,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a=-1”是“函數(shù)f(x)=x2-2ax-1在區(qū)間[-1,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案