2.化簡(jiǎn):已知α是第四象限角,則$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα.

分析 根據(jù)同角三角函數(shù)關(guān)系式以及角象限符號(hào)的判斷化簡(jiǎn)即可.

解答 解:由$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$+sinα$\sqrt{\frac{(1-cosα)^{2}}{1-co{s}^{2}α}}$=cosα$•\frac{1-sinα}{|cosα|}$+$\frac{1-cosα}{|sinα|}$,
∵α是第四象限角,
∴|cosα|=cosα,|sinα|=-sinα,
故得$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα,
故答案為:cosα-sinα,

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)關(guān)系式以及角象限符號(hào)的判斷,屬于基礎(chǔ)知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)y=f(x)(x∈R)滿足f(x-2)=f(x),且x∈[-1,1],f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-4,5]內(nèi)零點(diǎn)的個(gè)數(shù)為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后經(jīng)過點(diǎn)($\frac{π}{12}$,-$\sqrt{2}$),則φ等于( 。
A.-$\frac{π}{12}$B.-$\frac{π}{6}$C.0D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a,b,c∈R,且a>b,則下列選項(xiàng)中一定成立的是(  )
A.ac>bcB.$\frac{1}{a}<\frac{1}$C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,三棱錐P-ABC中,平面PAC⊥平面ABC,AB⊥BC,點(diǎn)D,E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF∥平面PBC.
(1)證明:EF∥BC
(2)證明:AB⊥平面PEF
(3)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,則函數(shù)y=f(f(x))-1的零點(diǎn)的個(gè)數(shù)是( 。
A.3B.4C.5D.無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若tanα=$\sqrt{15}$,則cosα=$±\frac{1}{4}$;sinα=$±\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{1}{{a}_{n}}$=$\frac{_{1}}{2+1}$-$\frac{_{2}}{{2}^{2}+1}$$+\frac{_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{_{n}}{{2}^{n}+1}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn,問是否存在實(shí)數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow a=({1-t\;\;,\;\;2t-1\;\;,\;\;0})$,$\overrightarrow b=({2\;\;,\;\;t\;\;,\;\;t})$(t∈R),則$|{\overrightarrow b-\overrightarrow a}|$的最小值是( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案