A. | 3 | B. | 4 | C. | 18 | D. | 40 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+6y得y=-$\frac{1}{6}$x+$\frac{1}{6}$z,
平移直線y=-$\frac{1}{6}$x+$\frac{1}{6}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{6}$x+$\frac{1}{6}$z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{1}{6}$x+$\frac{1}{6}$z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x-y+3=0}\\{2x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$,即A(0,3)
將A(0,3)的坐標(biāo)代入目標(biāo)函數(shù)z=x+6y,
得z=3×6=18.即z=x+6y的最大值為18.
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | p1<p2<$\frac{1}{2}$ | B. | ${p_1}<\frac{1}{2}<{p_2}$ | C. | p2<$\frac{1}{2}<{p_1}$ | D. | $\frac{1}{2}<{p_2}<{p_1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{\sqrt{21}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
滿意度評(píng)分分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com