若曲線C上的點(diǎn)P(x,y)到定點(diǎn)A(0,-2)的距離和到定直線y=-8的距離之比為1:2,則該曲線方程為
 
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:曲線C上的點(diǎn)P(x,y)到定點(diǎn)A(0,-2)的距離和到定直線y=-8的距離之比為1:2,可得
x2+(y+2)2
|y+8|
=
1
2
,化簡(jiǎn)即可得出.
解答: 解:∵曲線C上的點(diǎn)P(x,y)到定點(diǎn)A(0,-2)的距離和到定直線y=-8的距離之比為1:2,
x2+(y+2)2
|y+8|
=
1
2
,
化為
y2
16
+
x2
12
=1

∴該曲線方程為
y2
16
+
x2
12
=1

故答案為:
y2
16
+
x2
12
=1
點(diǎn)評(píng):本題考查了兩點(diǎn)之間的距離公式、橢圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,等邊△ABC的邊長(zhǎng)為2,D為AC中點(diǎn),且△ADE也是等邊三角形,將△ADE繞看A點(diǎn)順時(shí)針轉(zhuǎn)到到AD與AB重合的過程中,
BD
CE
的最大值是( 。
A、
3
2
B、
3
2
2
C、
3
3
2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分步和頻率分布直方圖
組號(hào)分組頻數(shù)
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計(jì)100
(Ⅰ)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的頻率;
(Ⅱ)求頻率分布直方圖中的a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:①定義域?yàn)镽;②?x∈R,有f(x+2)=f(x);③當(dāng)x∈[0,2]時(shí),f(x)=2|x-1|,設(shè)φ(x)=f(x)-
|x|
(x∈[-8,8])根據(jù)以上信息,可以得到函數(shù)φ(x)的零點(diǎn)個(gè)數(shù)為( 。
A、4B、5C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
4
)=
3
5
,α∈(
π
3
,
4
),求
1+sinα-cos2α
tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在(-1,1)上有定義,f(
1
2
)=-1,且滿足x,y∈(-1,1)時(shí),有f(x)+f(y)=f(
x+y
1+xy
),數(shù)列{xn}中,x1=
1
2
,xn+1=
2xn
1+xn2

(1)證明:f(x)在(-1,1)上為奇函數(shù);
(2)求數(shù)列{f(xn)}的通項(xiàng)公式;?
(3)求證:
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
>-
2n+5
n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m、n與平面α、β,有下列四個(gè)命題:
①m∥α,n∥β且α∥β,則m∥n;    
②m⊥α,n⊥β且α⊥β,則m⊥n;
③m⊥α,n∥β且α∥β,則m⊥n;   
④m∥α,n⊥β且α⊥β,則m∥n.
其中正確命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinα+
3
cosα,其中角α的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)P(x,y),且0≤α≤π.
(1)若P點(diǎn)的坐標(biāo)為(
3
,1)求f(a)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域
x+y≥1
y≥
3
3
x
y≤1
上的一個(gè)動(dòng)點(diǎn),試確定角α的取值范圍,并求函數(shù)f(a)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列的前n項(xiàng)的和為Sn(n∈N+),則關(guān)于{an}有下列三個(gè)命題:
①若an+1=an,則{an}即是等差數(shù)列,又是等比數(shù)列;
②若Sn=an2+bn(a,b∈R)?{an}是等差數(shù)列;
③若Sn=1-(-1)n,則{an}是等比數(shù)列.
則正確的命題是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案