1.如圖所示,已知在矩形ABCD中,|$\overrightarrow{AD}$|=4$\sqrt{3}$,|$\overrightarrow{AB}$|=8,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{BD}$=$\overrightarrow{c}$,求|$\overrightarrow{a}-\overrightarrow-\overrightarrow{c}$|

分析 由已知可$\overrightarrow{a}-\overrightarrow-\overrightarrow{c}$=2$\overrightarrow{DB}$,結合矩形ABCD中,|$\overrightarrow{AD}$|=4$\sqrt{3}$,|$\overrightarrow{AB}$|=8,利用勾股定理可得答案.

解答 解:∵矩形ABCD中,|$\overrightarrow{AD}$|=4$\sqrt{3}$,|$\overrightarrow{AB}$|=8,
$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{BD}$=$\overrightarrow{c}$,
∴|$\overrightarrow{a}-\overrightarrow-\overrightarrow{c}$|=|$\overrightarrow{AB}$-$\overrightarrow{BC}$-$\overrightarrow{BD}$|=|$\overrightarrow{AB}$-$\overline{AD}$-$\overrightarrow{BD}$|=|$\overrightarrow{DB}$-$\overrightarrow{BD}$|=2|$\overrightarrow{DB}$|=2$\sqrt{(4\sqrt{3})^{2}+{8}^{2}}$=8$\sqrt{7}$

點評 本題考查的知識點是向量的線性運算,向量的模,勾股定理,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)f(x)=x2-mx+2m的一個零點大于1,另一個零點小于1,則實數(shù)m的取值范圍為m<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=alnx+x2(a為實常數(shù))
(1)當x∈[1,e]時,討論方程f(x)=0的根的個數(shù);
(2)若a>0,且對任意的x1,x2∈(0,$\frac{1}{2}$],都有|f(x1)-f(x2)|≤|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.有下列命題
(1)函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)的表達式可改寫為y=4cos(2x-$\frac{π}{6}$);
(2)函數(shù)y=cos(sinx)(x∈R)為偶函數(shù);
(3)函數(shù)y=sin|x|是周期函數(shù),且周期為2π;
(4)若cosα=cosβ,則α-β=2kπ,k∈Z;
(5)設函數(shù)f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$的最大值為M,最小值為m,則M+m=4,其中正確的命題序號是(1)(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.小穎看到一卷衛(wèi)生紙上標明了重量,她想驗證一下,就來到物理實驗室,用天平稱后,正好是180克.接下來她又想知道這卷衛(wèi)生紙的長度和單層衛(wèi)生紙的厚度,但又不想將衛(wèi)生紙全都展開.請你利用物理實驗室和包裝上的信息,為小穎設計一種實現(xiàn)想法的方案.
產(chǎn)品名稱:180克維達衛(wèi)生紙
產(chǎn)品編號:v4131
主要原料:100%原生木漿
執(zhí)行標準:GB20810   優(yōu)等品(合格)
生產(chǎn)日期:見包裝     保質(zhì)期:三年
規(guī)格:3層   138mm×104mm/節(jié)  凈含量:180克

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)a1,a2,a3,a4,求x的值,使得函數(shù)f(x)=(x-a12+(x-a22+(x-a32+(x-a42的值最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.圓(x-1)2+(y+2)2=5上的點到直線y=2x+6的最短距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.用求根公式法或開方法求解下列一元一次方程:
(1)x2-3x+1=0;
(2)x2-6x-6=0;
(3)x2-6x-5=0;
(4)x2-2x-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=sin(2x+θ)+$\sqrt{3}$cos(2x+θ)是偶函數(shù),則tan2θ等于( 。
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步練習冊答案