14.已知數(shù)列{αn},其前n項(xiàng)和為Sn,且a1=$\frac{9}{2}$,Sn+Sn-1=2an(n≥2).
(1)求證:數(shù)列{Sn}是等比數(shù)列;
(2)設(shè)數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{3(n=1)}\\{n{a}_{n}(n≥2,n∈N*)}\end{array}\right.$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)由a1=$\frac{9}{2}$,Sn+Sn-1=2an(n≥2),Sn+Sn-1=2(Sn-Sn-1),可得:Sn=3Sn-1.利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)可得:Sn,利用遞推關(guān)系可得an.再利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”即可得出.

解答 (1)證明:∵a1=$\frac{9}{2}$,Sn+Sn-1=2an(n≥2),
∴Sn+Sn-1=2(Sn-Sn-1),化為:Sn=3Sn-1
∴數(shù)列{Sn}是等比數(shù)列,首項(xiàng)為$\frac{9}{2}$,公比為3.
(2)解:由(1)可得:Sn=$\frac{9}{2}×{3}^{n-1}$=$\frac{1}{2}×{3}^{n+1}$.
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{1}{2}×({3}^{n+1}-{3}^{n})$=3n
∵數(shù)列{bn}滿足bn=$\left\{\begin{array}{l}{3(n=1)}\\{n{a}_{n}(n≥2,n∈N*)}\end{array}\right.$,
∴bn=n•3n
∴數(shù)列{bn}的前n項(xiàng)和Tn=3+2×32+3×33+…+n•3n,
3Sn=32+2×33+…+(n-1)•3n+n•3n+1
∴-2Sn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1=$(\frac{1}{2}-n)•{3}^{n+1}$-$\frac{3}{2}$,
∴Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,圓C的極坐標(biāo)方程為ρ=4,經(jīng)過(guò)點(diǎn)P(1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=2+t}\end{array}\right.$(t為參數(shù)).
(I)寫出圓C的標(biāo)準(zhǔn)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.不等式2sin2x≤1(x∈[0,2π])的解集為[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,$\frac{5π}{4}$]∪[$\frac{7π}{4}$,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)上的點(diǎn)M的橫坐標(biāo)為2,且|MF|=3,F(xiàn)是拋物線的焦點(diǎn).
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)M(-1,0)的直線l與拋物線C相交于A、B兩點(diǎn).設(shè)線段AB的中點(diǎn)為P,記直線FA,F(xiàn)B,F(xiàn)P的斜率分別為k1,k2,k3,求當(dāng)k1k2+k3+1=0時(shí)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知sin2α=$\frac{1}{4}$,$\frac{π}{4}$<α<$\frac{π}{2}$,則cos(α+$\frac{π}{4}$)=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知如圖所示,已知向量$\overrightarrow{a}$,$\overrightarrow$,求作:$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{a}$-$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題:①三角形是一個(gè)是平面;②平行四邊形是一個(gè)平面;③梯形是一個(gè)平面圖形;④四邊相等的四邊形是菱形.其中正確的是( 。
A.B.①②C.①②③D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求經(jīng)過(guò)兩點(diǎn)A,B的直線的斜率和傾斜角,并判斷這條直線的傾斜角是銳角還是鈍角.
(1)A(2,3),B(4,7);
(2)A(-2,-2),B(1,-3);
(3)A(m,2$\sqrt{3}$m+$\sqrt{3}$),B(2m-1,3$\sqrt{3}$m),其中m∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$\frac{x^2}{4}+{y^2}=1$與直線l:x-y+λ=0相切.
(1)求λ的值;
(2)設(shè)直線$m:x-y+4\sqrt{5}=0$,求橢圓上的點(diǎn)到直線m的最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案