8.求函數(shù)f(x)=-x4+2x2+3,x∈[-3,2]的最大值和最小值.

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最值即可.

解答 解:函數(shù)f(x)=-x4+2x2+3,
f′(x)=-4x3+4x=-4x(x+1)(x-1),
x∈[-3,-1)時,f′(x)<0,f(x)遞減,
x∈(-1,0)時,f′(x)>0,f(x)遞增,
x∈(0,1)時,f′(x)<0,f(x)遞減,
x∈(1,2]時,f′(x)>0,f(x)遞增,
∴f(x)的最大值,最小值在f(-3),f(0),f(2),f(-1),f(1)中,
而f(-3)=-60,f(0)=3,f(2)=-5,
f(-1)=4,f(1)=4,
∴函數(shù)的最大值是4,最小值是-60.

點評 本題考查了求函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對稱,則φ的值可以為( 。
A.$-\frac{7π}{12}$B.$-\frac{5π}{12}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的不等式(mx-1)(x-2)>0的解集為{x|$\frac{1}{m}$<x<2},則m的取值范圍是( 。
A.m>0B.0<m<2C.m>$\frac{1}{2}$D.m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,圓C的方程為(x-2)2+y2=1,點P在直線l:x+y+1=0上,若過點P存在直線m與圓C交于A,B兩點,且點A為PB中點,則點P的恒坐標(biāo)的取值范圍是[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.121B.132C.142D.154

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若sin4=a,則cos4=-$\sqrt{1-si{n}^{2}4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若球的表面積變?yōu)樵瓉淼?倍,則半徑變?yōu)樵瓉淼?\sqrt{2}$倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函數(shù)F(x)=f[sin(1-x)]+g(x)在區(qū)間(0,1)上為增函數(shù),求a的取值范圍;
(2)設(shè)an=sin$\frac{1}{(n+1)^{2}}$,求證:$\sum_{k=1}^{n}{a}_{k}$<ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.利用單位圓寫出符合下列條件的角x的取值范圍.
(1)cosx$>\frac{1}{2}$;
(2)|cosx|$≤\frac{1}{2}$;
(3)sinx$≥\frac{1}{2}$且tanx≤-1.

查看答案和解析>>

同步練習(xí)冊答案