18.已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對(duì)稱,則φ的值可以為( 。
A.$-\frac{7π}{12}$B.$-\frac{5π}{12}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

分析 由條件利用三角恒等變換化簡(jiǎn)函數(shù)f(x)的解析式,再根據(jù)圖象關(guān)于y軸對(duì)稱的兩個(gè)函數(shù)間的關(guān)系,求得φ的值.

解答 解:由于函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)=$\sqrt{2}$sin[(2x+φ)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+φ+$\frac{π}{4}$)的圖象
與函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對(duì)稱,
而函數(shù)$g(x)=\sqrt{2}sin({2x+\frac{π}{3}})$的圖象關(guān)于y軸對(duì)稱后得到的函數(shù)的解析式為y=$\sqrt{2}$sin(-2x+$\frac{π}{3}$)=-$\sqrt{2}$sin(2x-$\frac{π}{3}$)=$\sqrt{2}$sin(2x+$\frac{2π}{3}$),
∴φ+$\frac{π}{4}$=$\frac{2π}{3}$,求得φ=$\frac{5π}{12}$,
故選:C.

點(diǎn)評(píng) 本題主要考查三角恒等變換,圖象關(guān)于y軸對(duì)稱的兩個(gè)函數(shù)間的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知焦點(diǎn)在x軸上的橢圓過點(diǎn)A(-3,0),且離心率e=$\frac{{\sqrt{5}}}{3}$,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{9}+\frac{y^2}{{\frac{81}{4}}}$=1B.$\frac{x^2}{4}+\frac{y^2}{9}$=1C.$\frac{x^2}{{\frac{81}{4}}}+\frac{y^2}{9}$=1D.$\frac{x^2}{9}+\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從裝有2個(gè)紅球和2個(gè)白球的袋內(nèi)任取兩球,下列每對(duì)事件中是互斥事件的是( 。
A.至少有一個(gè)白球;都是白球B.恰好有一個(gè)白球;恰好有兩個(gè)白球
C.至少有一個(gè)白球;至少有一個(gè)紅球D.至多有一個(gè)白球;都是紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$),x∈[0,π],當(dāng)x=$\frac{π}{4}$時(shí),f(x)取到最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在(0,+∞)的函數(shù)f(x)非負(fù)實(shí)數(shù),且滿足xf′(x)<f(x),若m,n∈(0,+∞)且m<n,則必有( 。
A.nf(n)<mf(m)B.nf(m)<mf(n)C.mf(m)<nf(n)D.mf(n)<nf(m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(A類題)如圖,在棱長為1的正方形ABCD-A1B1C1D1中選取四個(gè)點(diǎn)A1,C1,B,D,若A1,C1,B,D四個(gè)點(diǎn)都在同一球面上,則該球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)為增函數(shù),又f(2)=0,則不等式x•f(x)>0的解集為(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,曲線C1的方程為$\frac{{x}^{2}}{2}$+y2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長度建立坐標(biāo)系,曲線C2的極坐標(biāo)方程為2ρ=sinθ.
(1)寫出曲線C1的參數(shù)方程,并求出C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1,C2上的動(dòng)點(diǎn),求|$\overrightarrow{PQ}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求函數(shù)f(x)=-x4+2x2+3,x∈[-3,2]的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案