7.已知f(x)=$\frac{m}{x+1}$+nlnx(m,n為常數(shù)),在x=1處的切線方程為x+y-2=0.
(Ⅰ)求f(x)的解析式并寫出定義域;
(Ⅱ)若?x∈[$\frac{1}{e}$,1],使得對?t∈[$\frac{1}{2}$,2]上恒有f(x)≥t3-t2-2at+2成立,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)利用導(dǎo)數(shù)的幾何意義求得m,n的值,根據(jù)對數(shù)函數(shù)的定義得到函數(shù)定義域;
(Ⅱ)f(x)在[$\frac{1}{e}$,1]上的最小值為f(1)=1,只需t3-t2-2at+2≤1,即$2a≥{t^2}-t+\frac{1}{t}$對任意的$t∈[\frac{1}{2},2]$上恒成立,構(gòu)造函數(shù)m(t),利用導(dǎo)數(shù)求出m(t)的最大值,即可求得結(jié)論.

解答 解:(Ⅰ)由$f(x)=\frac{m}{x+1}+nlnx$可得$f'(x)=-\frac{m}{{{{(x+1)}^2}}}+\frac{n}{x}$,
由條件可得$f'(1)=-\frac{m}{4}+n=-1$,
把x=-1代入x+y=2可得,y=1,
∴$f(1)=\frac{m}{2}=1$,∴m=2,$n=-\frac{1}{2}$,
∴$f(x)=\frac{2}{x+1}-\frac{1}{2}lnx$,(0,+∞);
(Ⅱ)由(Ⅰ)知f(x)在$[\frac{1}{e},1]$上單調(diào)遞減,
∴f(x)在$[\frac{1}{e},1]$上的最小值為f(1)=1,
故只需t3-t2-2at+2≤1,即$2a≥{t^2}-t+\frac{1}{t}$對任意的$t∈[\frac{1}{2},2]$上恒成立,
令m(t)=${t^2}-t+\frac{1}{t}$,
易求得m(t)在$[\frac{1}{2},1]$單調(diào)遞減,[1,2]上單調(diào)遞增,
而$m(\frac{1}{2})=\frac{7}{4}$,$m(2)=\frac{5}{2}$,
∴2a≥m(t)max=g(2)
∴$a≥\frac{5}{4}$,即a的取值范圍為$[\frac{5}{4},+∞)$.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了恒成立問題的等價轉(zhuǎn)化方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知等比數(shù)列{an}的前n項和為Sn,若Sm=5,S2m=20,則S3m=65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,則下列命題正確的是( 。
A.若m、n都平行于平面α,則m、n一定不是相交直線.
B.m、n在平面α內(nèi)的射影互相垂直,則m、n互相垂直
C.若m、n都垂直于平面α,則m、n一定是平行直線.
D.已知α、β互相垂直,m、n互相垂直,若m⊥α,則n⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)?shù)列1,2+$\frac{1}{2}$,3+$\frac{1}{2}$+$\frac{1}{4}$,…,n+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$的前n項和為$\frac{1}{2}$n2+$\frac{3}{2}$n+$\frac{1}{{2}^{n-1}}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.《萊因德紙草書》(Rhind papyrus)是世界上最古老的數(shù)學(xué)著作之一.該書中有一道這樣的題目:100個面包分給5個人,每人一份,若按照每個人分得的面包個數(shù)從少到多排列,可得到一個等差數(shù)列,其中較多的三份和的$\frac{1}{3}$等于較少的兩份和,則最多的一份面包個數(shù)為( 。
A.35B.32C.30D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,程序執(zhí)行后的輸出結(jié)果為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“$?x∈[{\frac{π}{2},π}],sinx-cosx>2$”的否定是( 。
A.$?x∈[{\frac{π}{2},π}],sinx-cosx<2$B.$?x∈[{\frac{π}{2},π}],sinx-cosx≤2$
C.$?x∈[{\frac{π}{2},π}],sinx-cosx≤2$.D.$?x∈[{\frac{π}{2},π}],sinx-cosx<2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用數(shù)學(xué)歸納法證明對任意正整數(shù)n,都有$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$>$\frac{13}{24}$的過程中,由n=k推導(dǎo)n=k+1時,不等式的左邊增加的式子為( 。
A.$\frac{1}{2k+2}$B.$\frac{1}{2k+1}$+$\frac{1}{2k+2}$C.$\frac{1}{2k+1}$-$\frac{1}{2k+2}$D.$\frac{1}{2k+1}$-$\frac{3}{2k+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合M={x|x2=2},N={x|ax=1},若N⊆M,則a的值是{0,-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$}.

查看答案和解析>>

同步練習(xí)冊答案