19.命題“$?x∈[{\frac{π}{2},π}],sinx-cosx>2$”的否定是( 。
A.$?x∈[{\frac{π}{2},π}],sinx-cosx<2$B.$?x∈[{\frac{π}{2},π}],sinx-cosx≤2$
C.$?x∈[{\frac{π}{2},π}],sinx-cosx≤2$.D.$?x∈[{\frac{π}{2},π}],sinx-cosx<2$

分析 命題為特稱命題,根據(jù)特稱命題的否定是全稱命題進(jìn)行求解.

解答 解:命題為特稱命題,則命題的否定為:
$?x∈[{\frac{π}{2},π}],sinx-cosx≤2$,
故選:B

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x>0,y>0且$\frac{1}{x}$+$\frac{9}{y}$=1,求x+y的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x),對(duì)任意的x∈R,都有-f(x+2)=f(x)+f(2)成立,若函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,則f(2016)=( 。
A.0B.2016C.1D.-2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=$\frac{m}{x+1}$+nlnx(m,n為常數(shù)),在x=1處的切線方程為x+y-2=0.
(Ⅰ)求f(x)的解析式并寫出定義域;
(Ⅱ)若?x∈[$\frac{1}{e}$,1],使得對(duì)?t∈[$\frac{1}{2}$,2]上恒有f(x)≥t3-t2-2at+2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.F1(-4,0)、F2(4,0)是雙曲線C:$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{4}=1$(m>0)的兩個(gè)焦點(diǎn),點(diǎn)M是雙曲線C上一點(diǎn),且∠F1MF2=60°,則△F1MF2的面積為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足an+1=$\frac{{a}_{n}}{{2}_{{a}_{n}+1}}$,a1=1(n∈N+
(1)計(jì)算a2,a3,a4,a5;
(2)猜想{an}的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=lnx-x+1(x∈R+),g(x)=mx-1(m>0).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)x>0,討論函數(shù)y=f(x)的圖象與直線g(x)=mx-1(m>0)公共點(diǎn)的個(gè)數(shù);
(3)若數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,在m=2時(shí),an+1=f(an)+g(an)+2(n∈N*),求證:an≤2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sin(α-β)sinβ-cos(α-β)cosβ=$\frac{4}{5}$,且α是第二象限的角,求tan($\frac{π}{4}$+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )
A.眾數(shù)B.平均數(shù)C.中位數(shù)D.方差

查看答案和解析>>

同步練習(xí)冊(cè)答案