分析 (I)由$\sqrt{3}tanA$•tanB-tanA-tanB=$\sqrt{3}$,代入tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$,利用誘導(dǎo)公式、三角形內(nèi)角和定理即可得出.
(II)由余弦定理可得:c2=a2+b2-2abcosC,利用基本不等式的性質(zhì)即可得出.
解答 解:(I)∵$\sqrt{3}tanA$•tanB-tanA-tanB=$\sqrt{3}$,∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{\sqrt{3}(tanAtanB-1)}{1-tanAtanB}$=-$\sqrt{3}$,
∴tan(π-C)=-$\sqrt{3}$,化為tanC=$\sqrt{3}$,∵C∈(0,π),∴$C=\frac{π}{3}$.
(II)由余弦定理可得:c2=a2+b2-2abcosC,
∴4=a2+b2-ab≥${a}^{2}+^{2}-\frac{{a}^{2}+^{2}}{2}$,∴a2+b2≤8,當(dāng)且僅當(dāng)a=b是取等號(hào).
又a2+b2>4,
∴(a2+b2)∈(4,8].
點(diǎn)評(píng) 本題考查了誘導(dǎo)公式、三角形內(nèi)角和定理、余弦定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$a2 | B. | -$\frac{3}{2}$a2 | C. | $\frac{1}{2}$a2 | D. | $\frac{3}{2}$a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{8\sqrt{2}}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{7π}{2}$ | C. | $\frac{5π}{2}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$或-$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com