8.在平面直角坐標(biāo)系xOy中,以點(2,-3)為圓心且與直線2mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x-2)2+(y+3)2=5.

分析 直線2mx-y-2m-1=0(m∈R)化為:m(2x-2)-(y+1)=0,令$\left\{\begin{array}{l}{2x-2=0}\\{-(y+1)=0}\end{array}\right.$,解得x,y.可得直線2mx-y-2m-1=0經(jīng)過定點P(1,-1).可得:以點Q(2,-3)為圓心且與直線2mx-y-2m-1=0(m∈R)相切的所有圓中,R半徑最大時為R=|PQ|.

解答 解:直線2mx-y-2m-1=0(m∈R)化為:m(2x-2)-(y+1)=0,令$\left\{\begin{array}{l}{2x-2=0}\\{-(y+1)=0}\end{array}\right.$,解得x=1,y=-1.
∴直線2mx-y-2m-1=0經(jīng)過定點P(1,-1).
∵以點Q(2,-3)為圓心且與直線2mx-y-2m-1=0(m∈R)相切的所有圓中,R半徑最大時為R=|PQ|=$\sqrt{(2-1)^{2}+(-3+1)^{2}}$=$\sqrt{5}$.
∴要求的圓的標(biāo)準(zhǔn)方程為:(x-2)2+(y+3)2=5.
故答案為:(x-2)2+(y+3)2=5.

點評 本題考查了兩點之間的距離的公式、直線經(jīng)過定點、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b為正實數(shù).
(1)若$\frac{1}{a}$+$\frac{1}$=a+2b,求$\frac{1}{a}$+$\frac{1}$的最小值;
(2)若a+b≤a2b,a+b≤ab2,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}$,且z=3x+y的最大值為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=sin(2x+φ)(|φ|<π)的圖象向左平移$\frac{π}{6}$個單位后關(guān)于原點對稱,則φ=-$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-a|+2x,其中a>0.
(1)當(dāng)a=2時,求不等式f(x)≥2x+1的解集;
(2)若當(dāng)x∈(-1,+∞)時,恒有f(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4)時,f(x)=(1og2015888)x-2,f(sin1)與f(cos1)的大小關(guān)系為(  )
A.f(sin1)<f(cos1)B.f(sin1)=f(cos1)C.f(sin1)>f(cos1)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某苗圃基地為了解基地內(nèi)甲、乙兩塊地種植的同一種樹苗的長勢情況,從兩塊地各隨機抽取了10株樹苗,分別測出它們的高度如下(單位:cm)
甲:19   20  21  23  25  29  32  33  37   41
乙:10   24  26  30  34   37  44  46  47  48
(Ⅰ)用莖葉圖表示上述兩組數(shù)據(jù),并對兩塊地抽取樹苗的高度進行比較,寫出兩個統(tǒng)計結(jié)論;
(Ⅱ)苗圃基地分配這20株樹苗的栽種任務(wù),小王在苗高大于40cm的5株樹苗中隨機的選種3株,記X是小王選種的3株樹苗中苗高大于45cm的株數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x+sin2x.給出以下四個命題:
①?x>0,不等式f(x)<2x恒成立;
②?k∈R,使方程f(x)=k有四個不相等的實數(shù)根;
③函數(shù)f(x)的圖象存在無數(shù)個對稱中心;
④若數(shù)列{an}為等差數(shù)列,且f(al)+f(a2)+f(a3)=3π,則a2=π.
其中的正確命題有③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|a-3x|-|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實數(shù)x,使得不等式f(x)≥1-a+2|2+x|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案