10.已知函數(shù)f(x)=$\sqrt{3}$cos4x-sin4x.
(1)求函數(shù)f(x)最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{6}$]上的單調(diào)性及值域.

分析 (1)運用兩角和的余弦函數(shù)公式和周期公式,即可得到結(jié)論.
(2)由x∈[-$\frac{π}{12}$,$\frac{π}{6}$],可得4x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],利用余弦函數(shù)的圖象和性質(zhì)即可解得函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{6}$]上的單調(diào)性及值域.

解答 解:(1)∵f(x)=$\sqrt{3}$cos4x-sin4x=2cos(4x+$\frac{π}{6}$),
∴函數(shù)f(x)最小正周期T=$\frac{2π}{4}$=$\frac{π}{2}$.
(2)∵x∈[-$\frac{π}{12}$,$\frac{π}{6}$],4x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$].
∴當(dāng)4x+$\frac{π}{6}$∈[-$\frac{π}{6}$,0]時,即x∈[-$\frac{π}{12}$,-$\frac{π}{24}$]時,函數(shù)f(x)單調(diào)遞增;
當(dāng)4x+$\frac{π}{6}$∈[0,$\frac{5π}{6}$]時,即x∈[-$\frac{π}{24}$,$\frac{π}{6}$],函數(shù)f(x)單調(diào)遞減.
∴函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{6}$]上的值域為:[-$\sqrt{3}$,2].

點評 本題主要考查了兩角和的余弦函數(shù)公式和周期公式,余弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ-2cosθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知曲線l$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一道數(shù)學(xué)競賽題,甲、乙、丙單獨解出此題的概率分別為$\frac{1}{a}$、$\frac{1}$、$\frac{1}{c}$,其中a、b、c都是小于10的正整數(shù),現(xiàn)甲、乙、丙同時獨立解答此題,若三人中恰有一人解出此題的概率為$\frac{7}{15}$,則甲、乙、丙三人都未解出此題的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,將平面直角坐標(biāo)系的格點(橫、縱坐標(biāo)均為整數(shù)的點)按如圖規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點處標(biāo)0,點(1,0)處標(biāo)1,點(1,-1)處標(biāo)2,點(0,-1)處標(biāo)3,點(-1,-1)處標(biāo)4,點(-1,0)標(biāo)5,點(-1,1)處標(biāo)6,點(0,1)處標(biāo)7,以此類推,經(jīng)歸納可知標(biāo)注2013的格點的坐標(biāo)為( 。
A.(11,22)B.(12,23)C.(23,23)D.(23,22)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(x-$\frac{1}{y}$)+(x2-$\frac{1}{{y}^{2}}$)+…+(xn-$\frac{1}{{y}^{n}}$)=$\frac{x-{x}^{n+1}}{1-x}$+$\frac{1-\frac{1}{{y}^{n}}}{y-1}$(其中x≠0,x≠1,y≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若得到y(tǒng)=sin(2x-$\frac{π}{3}$)的圖象,可將y=cos(2x-$\frac{π}{4}$)的圖象(  )
A.向左平移$\frac{7π}{12}$個單位得到B.向右平移$\frac{7π}{12}$個單位得到
C.向左平移$\frac{7π}{24}$個單位得到D.向右平移$\frac{7π}{24}$個單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用四種不同的顏色給正方體ABCD-A1B1C1D1的六個面染色,要求相鄰兩個面涂不同的顏色,且四種顏色均用完,則所有不同的涂色方法共有( 。
A.24種B.96種C.72種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知Sn是數(shù)列{an}的前n項和,a1=2,$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=$\sqrt{2}$(n∈N*,n≥2)
(1)求Sn的表達式;
(2)求數(shù)列{an}的通項公式;
(3)若bn=$\frac{{a}_{n}{a}_{n+1}}{4}$(n∈N*),是否存在正整數(shù)n使得$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$>2成立?如果存在,請求出n的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$.
(1)若存在實數(shù)λ,μ使得$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,求證λ22=1;
(2)若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)≤0,求|$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案