1.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{-{x}^{2}+2x+lnx,x>0}\end{array}\right.$的零點(diǎn)個(gè)數(shù)是3.

分析 分段討論,當(dāng)x≤0時(shí),解得x=-2,即f(x)在(-∞,0]上有1個(gè)零點(diǎn),當(dāng)x>0時(shí),在同一坐標(biāo)系中,作出y=lnx與y=x2-2x,根據(jù)圖象,易知有2個(gè)交點(diǎn),即可求出零點(diǎn)的個(gè)數(shù).

解答 解:當(dāng)x≤0時(shí),f(x)=x2-4=0,解得x=-2,即f(x)在(-∞,0]上有1個(gè)零點(diǎn),
當(dāng)x>0時(shí),f(x)=-x2+2x+lnx=0,即lnx=x2-2x,
分別畫出y=lnx與y=x2-2x(x>0)的圖象,如圖所示:
由圖象可知道函數(shù)y=lnx,與函y=x2-2x有2個(gè)交點(diǎn),
函數(shù)f(x)=-x2+2x+lnx(x>0)的零點(diǎn)有2個(gè),
綜上所述,f(x)的零點(diǎn)有3個(gè),
故答案為:3.

點(diǎn)評(píng) 本題主要考查了函數(shù)的零點(diǎn)的個(gè)數(shù)的判斷,解題中注意體會(huì)數(shù)形結(jié)合思想與轉(zhuǎn)化思想在解題中的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知α,β為銳角,且tanα=$\frac{2}{3}$,tanβ=$\frac{3}{4}$,則sin(α+β)=$\frac{17\sqrt{13}}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax
(1)若f(x)在R上單調(diào)遞增,求a的取值集合;
(2)若|a|>1,求f(x)在閉區(qū)間[0,2|a|]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額稅率(%)
不超過(guò)1500元的部分3
超過(guò)1500元至4500元的部分10
超過(guò)4500元至9000元的部分20
(1)設(shè)某人月工資、薪金所得為x元,求應(yīng)納稅款Y的函數(shù)表達(dá)式?
(2)某人一月份應(yīng)交納此項(xiàng)稅款為303元,那么他當(dāng)月的工資,薪金所得是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+m(m為常數(shù)),則f(log3$\frac{1}{5}$)=( 。
A.4B.-4C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,由直線x=a,x=a+1(a>0),y=x2及x軸圍成的曲邊梯形的面積介于相應(yīng)小矩形與大矩形的面積之間,即a2<${∫}_{a}^{a+1}$x2dx<(a+1)2.類比之,?n∈N*,$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<A<$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$恒成立,則實(shí)數(shù)A=ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)曲線y=$\frac{2}{x}$在點(diǎn)(2,1)處的切線與直線y=ax-1垂直,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知X~N(μ,σ2)時(shí),P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,則$\int_3^4{\frac{1}{{\sqrt{2π}}}}{e^{-\frac{{{{({x-1})}^2}}}{2}}}$dx=(  )
A.0.043B.0.0215C.0.3413D.0.4772

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex(ax+b).若曲線在點(diǎn)P(0,f(0))處的切線方程為y=4x+2.
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)=ex(ax+b)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案