設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率e=2,右焦點F(c,0),方程ax2+bx-c=0的兩個根分別為x1,x2,則點P(x1,x2)在( 。
A、圓x2+y2=10內(nèi)
B、圓x2+y2=10上
C、圓x2+y2=10外
D、以上三種情況都有可能
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由已知圓的方程找出圓心坐標與圓的半徑r,然后根據(jù)雙曲線的離心率公式找出c與a的關系,根據(jù)雙曲線的平方關系,把c與a的關系代入即可得到a等于b,然后根據(jù)韋達定理表示出兩根之和和兩根之積,利用兩點間的距離公式表示出點P與圓心的距離,把a,b及c的關系代入即可求出值,與圓的半徑比較大小即可判斷出點與圓的位置關系.
解答: 解:由圓的方程x2+y2=10得到圓心O坐標為(0,0),圓的半徑r=
10
,
又雙曲線的離心率為e=
c
a
=2,即c=2a,
則c2=4a2=a2+b2,即3a2=b2,又a>0,b>0,得到b=
3
a,
因為方程ax2+bx-c=0的兩個實根分別為x1和x2,所以x1+x2=-
b
a
,x1x2=-
c
a
,
則|OP|=
x12+x22
=
7
<r=
10

所以點P在圓x2+y2=10內(nèi).
故選:A.
點評:本題著重考查了一元二次方程根與系數(shù)的關系、雙曲線的標準方程與簡單幾何性質(zhì)等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將長度為l(l≥4,l∈N*)的線段分成n(n≥3)段,每段長度均為正整數(shù),并要求這n段中的任意三段都不能構成三角形.例如,當l=4時,只可以分為長度分別為1,1,2的三段,此時n的最大值為3;當l=7時,可以分為長度分別為1,2,4的三段或長度分別為1,1,1,3的四段,此時n的最大值為4.則:
(1)當l=12時,n的最大值為
 
;
(2)當l=100時,n的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b為實數(shù),且a+2b=3,則2a+4b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n,l是空間中三條不重合的直線,則下列命題中正確的是(  )
A、若m∥n,n⊥l,則m⊥l
B、若m⊥n,n⊥l,則m∥l
C、若m,n共面,n與l共面,則m與l共面
D、若m,n異面,n與l異面,則m與l異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列條件中,能判定直線l⊥平面α的有(  )
A、l與平面α內(nèi)的兩條直線垂直
B、l與平面α內(nèi)的無數(shù)條直線垂直
C、l與平面α內(nèi)的任意一條直線垂直
D、l與平面α內(nèi)的某一條直線垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等比數(shù)列,a1=2,a4=16,則公比q等于( 。
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線l1:y=a,l2:y=
18
2a+1
(a>0)
,l1與函數(shù)y=|log4x|的圖象從左至右相交于點A、B,l2與函數(shù)y=|log4x|的圖象從左至右相交于點C、D,記線段AC和BD在x軸上的投影長度分別為m、n,當a變化時,
n
m
的最小值為( 。
A、4
B、16
C、211
D、210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,D、E分別是△ABC的邊AB、AC上的點,DE∥BC,且
AD
DB
=2,那么△ADE與四邊形DBCE的面積比是(  )
A、
2
3
B、
2
5
C、
4
5
D、
4
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了判斷甲乙兩名同學本學期幾次數(shù)學考試成績哪個比較穩(wěn)定,通常需要知道這兩個人的( 。
A、平均數(shù)B、眾數(shù)
C、方差D、頻率分布

查看答案和解析>>

同步練習冊答案