20.已知集合S={P|P=(x1,x2,x3),xi∈{0,1},i=1,2,3}對于A=(a1,a2,a3),B=(b1,b2,b3)∈S,定義A與B的差為A-B=(|a1-b1|,|a2-b2|,|a3-b3|),定義A與B之間的距離為d(A,B)=$\sum_{i=1}^{3}$|ai-bi|.對于?A,B,C∈S,則下列結(jié)論中一定成立的是( 。
A.d(A,C)+d(B,C)=d(A,B)B.d(A,C)+d(B,C)>d(A,B)C.d(A-C,B-C)=d(A,B)D.d(A-C,B-C)>d(A,B)

分析 因?yàn)槊總(gè)數(shù)位上都是0或者1,取差的絕對值仍然是0或者1,符合Sn的要求.然后是減去C的數(shù)位,不管減去的是0還是1,每一個(gè)a和每一個(gè)b都是同時(shí)減去的,因此不影響他們原先的差.

解答 解:設(shè)A=(a1,a2,a3),B=(b1,b2,b3),C=(c1,c2,c3)∈S
因ai,bi∈0,1,故|ai-bi|∈0,1,(i=1,2,3)a1b1∈0,1,
即A-B=(|a1-b1|,|a2-b2|,|a3-b3|)∈S
又ai,bi,ci∈(0,1),i=1,2,3
當(dāng)ci=0時(shí),有||ai-ci|-|bi-ci||=|ai-bi|;
當(dāng)ci=1時(shí),有||ai-ci|-|bi-ci||=|(1-ai)-(1-bi)=|ai-bi|,
故d(A-C,B-C)=d(A,B)成立.

點(diǎn)評 本題是綜合考查集合、數(shù)列與推理綜合的應(yīng)用,這道題目的難點(diǎn)主要出現(xiàn)在讀題上,需要仔細(xì)分析,以找出解題的突破點(diǎn).題目所給的條件其實(shí)包含兩個(gè)定義,第一個(gè)是關(guān)于Sn的,其實(shí)Sn中的元素就是一個(gè)n維的坐標(biāo),其中每個(gè)坐標(biāo)值都是0或者1,也可以這樣理解,就是一個(gè)n位數(shù)字的數(shù)組,每個(gè)數(shù)字都只能是0和1,第二個(gè)定義叫距離,距離定義在兩者之間,如果直觀理解就是看兩個(gè)數(shù)組有多少位不同,因?yàn)橹挥?和1才能產(chǎn)生一個(gè)單位的距離,因此這個(gè)大題最核心的就是處理數(shù)組上的每一位數(shù),然后將處理的結(jié)果綜合起來,就能看到整體的性質(zhì)了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某食品廠為了檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上40間產(chǎn)品作為樣本稱出它們的重量(單位:克),重量的分組區(qū)間為(490,495],(495,500],…(510,515],由此得到樣本的頻率分布直方圖,如圖所示.
(Ⅰ)根據(jù)頻率分布直方圖,求重量超過505克的產(chǎn)品數(shù)量;
(Ⅱ)在上述抽取的40件產(chǎn)品中任取2件,設(shè)Y為重量超過505克的產(chǎn)品數(shù)量,求Y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1){x}^{2}-2ax+b+2,x≤0}\\{(a-1)x+b+2,x>0}\end{array}\right.$,若不等式f(x)<0的解集為非空集合M,且M⊆(-1,2),則3a-b的取值范圍為(  )
A.(5,+∞)B.[-1,+∞)C.(-∞,5)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)(0,$\sqrt{3}$),離心率為$\frac{1}{2}$,左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0)
(I
Ⅰ)求橢圓的方程     
(Ⅱ)若直線l:y=-$\frac{1}{2}$x+m與橢圓交于A,B兩點(diǎn),與以$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)為直徑的圓交于F1,F(xiàn)2兩點(diǎn),且滿足D,求直線DF1⊥F1F2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C的方程是x2+y2=1,點(diǎn)A(1,0),直線l與圓C相交于P、Q兩點(diǎn)(不同于A),
(1)若∠PAQ=90°,則直線l必經(jīng)過圓心O;
(2)若直線l經(jīng)過圓心O,則∠PAQ=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1
(1)若過點(diǎn)(-2,0)的直線l與圓C1交于A,B兩點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{8}{3}$,求直線l的方程;
(2)設(shè)動(dòng)圓C同時(shí)平分圓C1的周長,圓C2的周長,
①證明動(dòng)圓圓心C在一條直線上運(yùn)動(dòng);
②動(dòng)圓C是否過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正方體ABCD-A1B1C1D1中,給出下列結(jié)論:①AC⊥B1D1;②AC1⊥B1C;③AB1與BC1所成的角為60°;④AB與A1C所成的角為45°.其中所有正確結(jié)論的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖:拋物線y2=4x的焦點(diǎn)為F,原點(diǎn)為O,直線AB經(jīng)過點(diǎn)F,拋物線的準(zhǔn)線與x軸交于點(diǎn)C,若∠OFA=135°,則tan∠ACB=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=eax-x,其中a∈R,e=2.71828…為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:n∈N*時(shí),($\sqrt{e}$)n(n+1)≥(n。e

查看答案和解析>>

同步練習(xí)冊答案