分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識先求出a,b的關(guān)系,然后利用基本不等式求5a+4b的最小值.
解答 解:由z=ax+by(a>0,b>0)得y=$-\frac{a}x+\frac{z}$,
作出可行域如圖:
∵a>0,b>0
∴直線y=$-\frac{a}x+\frac{z}$的斜率為負,且截距最大時,z也最大.
平移直線y=$-\frac{a}x+\frac{z}$,由圖象可知當y=$-\frac{a}x+\frac{z}$經(jīng)過點A時,
直線的截距最大,此時z也最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,即A(4,5).
此時z=$\frac{4}{a}$+$\frac{5}$=10,
即$\frac{2}{5a}$+$\frac{1}{2b}$=1,
則5a+4b=(5a+4b)($\frac{2}{5a}$+$\frac{1}{2b}$)=2+2+$\frac{8b}{5a}$+$\frac{5a}{2b}$≥4+2$\sqrt{\frac{8b}{5a}•\frac{5a}{2b}}$=4+4=8,
當且僅當$\frac{8b}{5a}$=$\frac{5a}{2b}$,即4b=5a時,取等號,
故5a+4b的最小值為8,
故答案為:8;
點評 本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4-π | B. | π-2 | C. | 1-$\frac{π}{2}$ | D. | 1-$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com