12.某幾何體三視圖如圖所示,則該幾何體的體積為(俯視圖中弧線是$\frac{1}{4}$圓。ā 。
A.4-πB.π-2C.1-$\frac{π}{2}$D.1-$\frac{π}{4}$

分析 由三視圖可知:該幾何體為一個(gè)正方體挖去一個(gè)圓柱的$\frac{1}{4}$而剩下的幾何體.

解答 解:由三視圖可知:該幾何體為一個(gè)正方體挖去一個(gè)圓柱的$\frac{1}{4}$而剩下的幾何體.
∴該幾何體的體積V=13-$\frac{1}{4}$×π×12×1=1-$\frac{π}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算、正方形與圓柱的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示的算法中,輸出的S的值為( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.若A=60°,c=2,b=1,則a=( 。
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,且∠DAB=60°,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,G為AD邊的中點(diǎn).
(1)求證:平面PAD⊥平面PGB
(2)若點(diǎn)E在BC邊上,且$\overrightarrow{BE}$=$\frac{1}{4}$$\overrightarrow{BC}$,求平面PDC和平面PGE所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={1,x},B={1,2},且A∪B={1,2,3},則x=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在區(qū)間[0,$\frac{π}{2}$]上遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[-$\frac{1}{3}$,+∞)D.[-$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,若目標(biāo)函數(shù)z=$\frac{x}{a}$+$\frac{y}$(a>0,b>0)的最大值為10,則5a+4b的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+y的最大值為( 。
A.2B.$\frac{3}{2}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案