分析 (1)將4an=an-1-3(n≥2)轉(zhuǎn)換成,a1+1=512≠0,$\frac{{a}_{n}+1}{{a}_{n-1}+1}=\frac{1}{4}$,{an+1}是等比數(shù)列;
(2)log2(an+1)=11-2n,寫出{bn}的通項公式,bn=|11-2n|,分類討論n≤5,所有的項都是正的,因此Sn=10n-n2,當(dāng)當(dāng)n≥6時,從第六項開始是負(fù)數(shù),Sn=2T5-Tn=n2-10n+50.
解答 解:(Ⅰ)由題意可知:${a}_{n}=\frac{1}{4}{a}_{n-1}$-$\frac{3}{4}$,an+1=$\frac{1}{4}({a}_{n+1}+1)$,
∵a1+1=512≠0,
∴{an+1}是以512為首項,$\frac{1}{4}$為公比的等比數(shù)列,
(Ⅱ)由(Ⅰ)可知,${a}_{n}+1=512•(\frac{1}{4})^{n-1}$=211-2n,
log2(an+1)=11-2n,
bn=|11-2n|,
令cn=11-2n,設(shè){cn}的前n項和Tn=10n-n2,
當(dāng)n≤5時,Sn=Tn=10n-n2,
當(dāng)n≥6時,Sn=2T5-Tn=n2-10n+50,
∴${S}_{n}=\left\{\begin{array}{l}{10n-{n}^{2}}&{n≤5}\\{{n}^{2}-10n+50}&{n≥6}\end{array}\right.$.
點評 本題考查證明數(shù)列是等比數(shù)列,采用分類討論法求數(shù)列的前n項和,過程簡單明了,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3}^{n+1}-4n-3}{2}$ | B. | $\frac{{3}^{n}-2n-1}{2}$ | C. | $\frac{{3}^{n}-2n+1}{2}$ | D. | 3n+1-2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com